q&more
Meine Merkliste
my.chemie.de  
Login  

News

Präziserer Blick auf die Entstehung von Krankheiten

Neues Verfahren zur Untersuchung epigenetischer Informationen an lebenden Zellen

Universität Stuttgart / IBTB

Zellkern einer menschlichen Zelle mit den Komponenten des Detektionssystems. Die gelben Punkte zeigen DNA-Methylierung an den untersuchten Regionen des Genoms an. Im oberen Teil des Bildes ist das Detektorsystem schematisch dargestellt.

09.10.2017: Der Forschungsgruppe von Prof. Albert Jeltsch am Institut für Biochemie und Technische Biochemie der Universität Stuttgart ist es erstmals gelungen, epigenetische Informationen des Erbguts an lebendigen Zellen auszulesen. Dies wird es ermöglichen, die Entstehung von Krankheiten und andere biologische Entwicklungsprozesse besser zu verstehen und neue Therapieansätze zu entwickeln.

Epigenetische Information besteht aus chemischen Veränderungen, die der DNA und den diese umgebenden Proteinen an definierten Positionen angehängt werden. Sie beeinflussen die Entwicklung von vielzelligen Organismen und sind wesentlich an der Entstehung von Krankheiten beteiligt. Wenn man die epigenetischen Informationen kennt, kann man erklären, warum verschiedene Zellen sich trotz gleichem Genom unterschiedlich verhalten und, so die Hoffnung, diese Prozesse beeinflussen.

Bisher konnte die Veränderung epigenetischer Informationen jedoch nur in mehreren Stufen an Zellproben untersucht werden, die dabei zerstört wurden. Dies ist deshalb von Nachteil, weil so Entwicklungsprozesse nur punktuell erfasst werden und die einzelnen Zellproben zudem unterschiedliche Merkmale aufweisen können.

Mit der von der Gruppe um Professor Jeltsch entwickelten Methode zur Analyse epigenetischer Informationen an lebenden Zellen sind nun erstmals durchgehende Untersuchungen an derselben Zelle möglich. Das Verfahren beruht auf der spezifischen Bindung von Ankermolekülen im Genom, kombiniert mit der Erkennung von epigenetischen Signalen durch Leseproteine. Wenn diese Signale an einem bestimmten Ort vorhanden sind, binden beide Elemente dicht beieinander. Es kommt zur Aktivierung eines Fluoreszenzproteins, das in entsprechenden Fluoreszenzmikroskopen aufgespürt werden kann.

„Mit der neuen Methode können Entwicklungsprozesse in Zellen über längere Zeiträume und in verschiedenen Zellbereichen deutlich präziser beobachtet werden“, erklärt Jeltsch. „Dies eröffnet neue Möglichkeiten, die Reprogrammierung von epigenetischer Information während der Entwicklung von Organismen und auch bei der Entstehung von Krankheiten zu verfolgen.“ Profitieren könnte davon neben der Grundlagenforschung zum Beispiel die Tumortherapie.

Originalveröffentlichung:
Cristiana Lungu, Sabine Pinter, Julian Broche, Philipp Rathert, Albert Jeltsch; "Modular fluorescence complementation sensors for live cell detection of epigenetic signals at endogenous genomic sites"; Nature Communications; 2017 Sep 21;8(1):649.

Fakten, Hintergründe, Dossiers

  • Universität Stuttgart
  • Zellen
  • Zellanalyse

Mehr über Uni Stuttgart

  • News

    Beim Phasenübergang benutzen die Elektronen den Zebrastreifen

    Dass Materie in drei verschiedenen Aggregatzuständen oder Phasen vorkommt (fest, flüssig und gasförmig), wissen wir aus der Schulzeit. Wie jedoch die Umwandlung von einer in die andere Phase im Detail geschieht, darüber rätseln Physiker bis heute. Ein internationales Forscherteam unter der ... mehr

    Neue Erkenntnisse zur Replikation

    Die Fähigkeit zur Weitergabe von genetischer Information ist eine Grundvoraussetzung für das Leben. Damit bei einer Zellteilung jede Tochterzelle die notwendige genetische Information erhält, muss sich die DNA der Zelle, die Trägerin der genetischen Information, zunächst verdoppeln. Diese R ... mehr

    Auf dem Weg zu empfindlicheren Sensoren

    Verschränkte Lichtzustände ermöglichen die Erhöhung der Sensitivität in der optischen Interferometrie, einer Messmethode in der Physik. Hierfür benötigt man sogenannte pfadverschränkte Photonenzustände in zeitlich wohl definierten Pulsen. Bisher war die Erzeugung solcher Zustände jedoch nur ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.