q&more
Meine Merkliste
my.chemie.de  
Login  

News

Kleine Helfer bei der Zellreinigung

Welche Proteine den natürlichen Recyclingprozess im Körper unterstützen

Claudine Kraft

In einer Hefezelle wird der Zellabfall (magentafarben) von Autophagosomenmembranen (grün) eingehüllt.

15.08.2018: Zellen sammeln, zersetzen und recyceln überflüssiges oder beschädigtes Zellmaterial. Dieser Prozess, die Autophagie, ist wichtig, da zelluläre Abfälle für den gesamten Organismus schädlich sind, wenn sie sich in den Zellen ansammeln. Wie auch bei der Aufbereitung von Hausmüll erfordert die Autophagie bestimmte Mechanismen und Elemente. Ein Team um Prof. Dr. Claudine Kraft vom Institut für Biochemie und Molekularbiologie der Universität Freiburg und Levent Bas vom Institut für Biochemie und Zellbiologie der Universität Wien/Österreich hat neue Erkenntnisse über die Rolle von Proteinen bei der für die Zellreinigung wichtigen Verschmelzung von Autophagosomen und Vakuolen gewonnen.

Während des Prozesses der Autophagie werden beschädigte Zellteile, ungenutzte Proteine oder andere zelluläre Abfälle in einem Vesikel, dem so genannten Autophagosom, eingeschlossen, so wie auch Hausmüll in Säcke gepackt wird. Die Vesikel werden bei Säugetieren zu einem Lysosom oder in Hefen und Pflanzen zu Vakuolen, den Zellorganellen, transportiert. Diese Organellen dienen einem ähnlichen Zweck wie Recyclingfabriken: Sie bauen das von den Autophagosomen mitgebrachte Material ab, sodass dessen einzelne Bausteine wiederverwendet werden können. Zahlreiche Proteine initiieren und regulieren den Prozess in den Zellen: Über 40 verschiedene sind bisher identifiziert. Deren molekulare Funktion ist jedoch weitgehend noch unbekannt. Nicht bekannt war bisher auch, wie es den Autophagosomen und den Vakuolen gelingt, ihre Membranen richtig zu verschmelzen, damit die zellulären Abfälle recycelt werden.

In ihrer aktuellen Veröffentlichung gibt die Freiburger Biochemikerin eine mögliche Erklärung: Um die Anforderungen der Autophagosomen-Vakuolen-Fusion zu verstehen, haben Kraft und Bas mit ihrem Team den Prozess im Labor nachgestellt. Sie trennten Vakuolen, Autophagosomen und intrazelluläre Flüssigkeit von Hefezellen und schufen eine Umgebung, in der die Fusion in vitro, also außerhalb eines lebenden Organismus, beobachtet werden kann.

Generell sind bei Membranfusionen vier gebündelte so genannte SNARE-Proteine erforderlich. Die Wissenschaftlerinnen und Wissenschaftler um Kraft konnten nun bestätigen, dass auch die Autophagosomen-Vakuolen-Fusion ein von SNARE-Proteinen getriebener Prozess ist und dass drei bisher bekannte SNAREs während des Fusionsvorgangs wirken. Zudem endeckten sie das vierte benötigte SNARE, Ykt6 genannt. Die Ergebnisse helfen, die Autophagie und ihre zugrunde liegenden molekularen Prozesse besser zu verstehen. Und dank ihres neu entwickelten In-vitro-Ansatzes können zukünftig weitere Proteine identifiziert werden, die im Fusionsprozess wirken.

Originalveröffentlichung:
Levent Bas, Daniel Papinski, Mariya Licheva, Raffaela Torggler, Sabrina Rohringer, Martina Schuschnig, and Claudine Kraft; "Reconstitution reveals Ykt6 as the autophagosomal SNARE in autophagosome-vacuole fusion"; J Cell Biology; 2018

Fakten, Hintergründe, Dossiers

  • Vakuolen
  • Autophagie
  • Zellreinigung
  • Vesikel
  • Universität Freiburg
  • Membranen
  • Hefezellen
  • Hefen

Mehr über Uni Freiburg

  • News

    Eine Frage der Zeit: Wie das Immunsystem körpereigene von krankheitserregenden Molekülen unterscheidet

    Ein Team um die Freiburger Biologen Prof. Dr. Wolfgang Schamel und Prof. Dr. Wilfried Weber hat in einem Experiment die Dauer der Wechselwirkung eines Proteins mit T-Zellen, weißen Blutkörperchen, kontrolliert und damit gezeigt, wie das Immunsystem krankheitserregende von körpereigenen Mole ... mehr

    Verkehrskontrolle für Zellen

    Zellen im menschlichen Körper können sich unterschiedlich verhalten, abhängig von den mechanischen Eigenschaften des Gewebes, das sie umgibt. Dies gilt besonders für Immunzellen, die durch den Körper wandern, dabei auf Gewebe mit unterschiedlichen Eigenschaften treffen und darauf angemessen ... mehr

    Stammzellen regulieren ihr Schicksal, indem sie ihre Steifigkeit verändern

    Bei erwachsenen Menschen finden sich so genannte Mesenchymale Stammzellen (MSCs) hauptsächlich im Knochenmark. MSC spielen eine wichtige Rolle bei der Reparatur beschädigter Organe. Die Umwandlung einer einzelnen MSC in ein komplexes Gewebe wie Knorpel startet mit dem Zusammenschluss dieser ... mehr

  • q&more Artikel

    Modulare Biofabriken auf Zellebene

    Der „gebürtige Bioorganiker“ hatte sich bei seiner Vorliebe für komplexe Molekülarchitekturen nie die klassische Einteilung von synthetischen Polymeren und biologischen Makromolekülen zu eigen gemacht. Moleküle sind nun mal aus Atomen zusammengesetzt, die einen wie die anderen, warum da ein ... mehr

    Lesezeichen

    Aus einer pluripotenten Stammzelle kann sowohl eine Muskel- als auch eine Leberzelle entstehen, die trotz ihres unterschiedlichen Erscheinungsbildes genetisch identisch sind. Aus ein und demselben ­Genotyp können also verschiedene Phänotypen entstehen – die Epigenetik macht es möglich! Sie ... mehr

  • Autoren

    Dr. Stefan Schiller

    Stefan M. Schiller, Jg. 1971, studierte Chemie mit Schwerpunkt Makromolekulare und Biochemie in Gießen, Mainz und an der University of Massachusetts. Er promovierte bis 2003 am Max-Planck-Institut für Polymerforschung in Mainz über biomimetische Membransysteme, es folgten Forschungsaufentha ... mehr

    Julia M. Wagner

    Julia M. Wagner studierte Pharmazie in Freiburg (Approbation 2008). Seit 2008 ist sie Doktorandin und wissenschaftliche Mitarbeiterin im Arbeitskreis von Professor Dr. M. Jung. In ihrer Forschung beschäftigt sie sich mit der zellulären Wirkung von Histon-Desacetylase-Inhibitoren. mehr

    Prof. Dr. Manfred Jung

    Manfred Jung hat an der Universität Marburg Pharmazie studiert (Approbation 1990) und wurde dort in pharmazeutischer Chemie bei W. Hanefeld promoviert. Nach einem Postdoktorat an der Universität Ottawa, Kanada begann er 1994 am Institut für Pharmazeutische Chemie der Universität Münster mit ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.