q&more
Meine Merkliste
my.chemie.de  
Login  

News

Ringförmige RNA ist für Gehirnfunktion wichtig

The circular RNA biology Training Network (circRTrain), MDC

Ringförmige RNA kann Hirnfunktionen beeinflussen.

16.08.2017: Wissenschaftliche Untersuchungen haben erstmals gezeigt, dass ringförmige RNA Hirnfunktionen beeinflussen kann. Wenn ein RNA-Molekül namens Cdr1as aus dem Erbgut von Mäusen gelöscht wird, versagt der Reizfilter in ihrem Gehirn – ähnlich wie bei Patienten, die psychiatrische Leiden haben.

Im Gehirn von Säugetieren kommen ringförmige RNAs (circRNA) in Hunderten verschiedenen Varianten vor. Trotz dieser Fülle blieb eine Frage bislang unbeantwortet: Wofür sind sie dort eigentlich gut? Nun präsentieren Nikolaus Rajewsky und sein Team am Berlin Institute of Medical Systems Biology (BIMSB) am Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC) sowie seine Kollegen am MDC und der Charité erstmals Daten, die die seltsamen Ringe mit Hirnfunktionen verknüpfen.

RNA ist mehr als ein gewöhnlicher Bote zwischen der DNA und den Proteinen, in das das Erbgut übersetzt wird. Vielmehr gibt es etliche Arten nicht-kodierender RNA. Das kann lange nicht-kodierende RNA (lncRNA) sein oder kurze regulatorische RNA (miR), die Moleküle können bei der Protein-Produktion stören (siRNA) oder sie mit ihrer Unterstützung ermöglichen (tRNA). In den vergangenen 20 Jahren haben Wissenschaftler etwa zwei Dutzend RNA-Varianten entdeckt, die verschlungene Netzwerke im molekularen Mikrokosmos bilden. Die rätselhaftesten unter ihnen sind die circRNAs. Bei dieser ungewöhnlichen RNA-Klasse verbinden sich beide Enden kovalent zu einem geschlossenen Ring. Jahrzehntelang wurden diese Strukturen als eine seltene, geradezu exotische RNA-Art abgetan. Das Gegenteil ist der Fall. Mit den neuesten RNA-Sequenziermethoden konnte aufgedeckt werden, dass es sich um eine umfangreiche RNA-Klasse handelt, die vor allem im Gehirn vorkommt.

Es gibt Tausende Arten ringförmiger RNA bei Fadenwürmern, Mäusen und Menschen

Im Jahr 2013 erschienen zwei bahnbrechende Studien zur Charakterisierung der ringförmigen RNA im Fachblatt Nature, eine davon kam aus dem Labor von Nikolaus Rajewsky. Die meisten Ringe sind demnach erstaunlich beständig, sie schweben stunden-, mitunter tagelang im Zytoplasma. Die Systembiologen schlugen vor, dass circRNA zumindest manchmal der Genregulation dient. Cdr1as – ein einsträngiger RNA-Ring, der 1500 Nukleotide lang ist – könnte microRNA wie ein „Schwamm“ aufsaugen. So bietet er zum Beispiel mehr als 70 Andockstellen für eine microRNA namens miR-7. MicroRNAs sind kurze RNA-Moleküle, die sich meist an eine komplementäre Sequenz der Boten-RNA anheften und so kontrollieren, in welcher Menge eine Zelle bestimmte Proteine produziert.

Außerdem haben Rajwesky und sein Team Datenbanken durchforstet und dabei Tausende unterschiedliche circRNAs in Fadenwürmern, Mäusen und Menschen entdeckt. Die meisten dieser Ringe hatten sich im Laufe der Evolution kaum verändert. „Wir sind auf ein paralleles Universum voller RNAs gestoßen, die noch niemand ergründet hatte“, sagt Rajewsky. Die Publikation zog Hunderte weiterer Studien nach sich. „Das Feld ist geradezu explodiert.“

Einen Ring verstehen, der vor allem in Neuronen vorkommt

Für die Studie, die nun in Science erscheint, taten sich die Systembiologen mit der Arbeitsgruppe von Carmen Birchmeier am MDC zusammen und schauten sich Cdr1as abermals an. „Dieser spezielle Ring ist vor allem in Neuronen zu finden, die Erregung weiterleiten. In Glia-Zellen kommt er dagegen nicht vor“, sagt Monika Piwecka. Sie ist eine der Erstautorinnen und hat die meisten Experimente koordiniert. „Im Hirngewebe von Mäusen und Menschen heften sich daran zwei microRNAs an: miR-7 und miR-671.“

Mithilfe der Gen-Schere CRISPR/Cas9 entfernte das Team anschließend die circRNA Cdr1as aus dem Erbgut von Mäusen. Die meisten microRNAs in den vier untersuchten Hirnregionen der Tiere beeinträchtigte das gar nicht. Allerdings war weniger miR-7 und mehr miR-671 vorhanden, und zwar nach der Transkription. Das ist im Einklang mit der Idee, dass Cdr1as im Zytoplasma mit microRNAs interagiert.

„Das weist darauf hin, dass Cdr1as normalerweise miR-7 nicht einfach nur wie ein Schwamm aufsaugt, sondern diese microRNA dabei stabilisiert und transportiert. Dagegen dient miR-167 anscheinend dazu, die Konzentration der Ringe zu regulieren“, sagt Rajewsky. Wenn microRNA im Zytoplasma umher schwimmt, ohne sich irgendwo anzuheften, wird sie schnell als Müll entsorgt. Der Ring würde dieses Schicksal verhindern und die Moleküle gleichzeitig zu neuen Zielen wie den Synapsen transportieren. „Vielleicht sollten wir uns Cdr1as weniger als Schwamm vorstellen, sondern als Boot. Seine Passagiere ertrinken nicht und werden zu neuen Häfen gebracht.“

Die veränderte Konzentration der microRNA hatte dramatische Effekte auf die Boten-RNA und die Proteine, die Nervenzellen herstellen. Besonders betroffen waren die Gene, die als erste auf die Stimulation eines Neurons reagieren (immediate early genes). Ähnlich erging es der Boten-RNA, die Erbgutabschriften für jene Proteine transportiert, die bei den Tieren den Schlaf-Wach-Rhythmus aufrechterhalten.

Cdr1as verändert das Geschehen in der Synapse

Mithilfe von Einzelzell-Elektrophysiologie beobachtete dann der Charité-Forscher Christian Rosenmund, dass die Synapsen doppelt so häufig spontan ihre kleinen Botenstoff-Bläschen entleeren. Außerdem hatte sich die Reaktion der Synapse auf zwei aufeinanderfolgende Reize gewandelt. Verhaltenstests, die am MDC durchgeführt wurden, spiegelten diese Ergebnisse wider. Obwohl die Mäuse in vielerlei Hinsicht normal erschienen, konnten sie ihre Reaktion auf externe Reize wie Lärm nicht mehr abschwächen. Ähnliche Störungen der Präpulsinhibition wurden auch bei Patienten beobachtet, die an Schizophrenie oder anderen psychiatrischen Krankheiten leiden.

Ein Beispiel aus dem Alltag zeigt, wie wichtig diese Filterfunktion ist: Wenn ein lauter Knall die ruhige Atmosphäre in einer Bibliothek stört, ist man unwillkürlich alarmiert. Das gleiche Geräusch wird dagegen neben einer Baustelle viel weniger bedrohlich wirken. Denn in diesem Fall hatte das Gehirn bereits mit dem Lärm zu tun und filtert unnötige Informationen heraus. Dadurch ist der Schreck nicht mehr so groß (Präpulsinhibition). Diese grundlegende Hirnfunktion, die es gesunden Tieren und Menschen erlaubt, sich zeitweise an einen starken Reiz zu gewöhnen und Informationsüberfluss zu vermeiden, haben die Forscher nun mit Cdr1as verknüpft.

„Unsere Daten legen nahe, dass Cdr1as und seine direkten Interaktionen mit microRNAs wichtig sind für die Verarbeitung von sensorischen und motorischen Reizen und für die Informationsübertragung an den Synapsen“, sagt Nikolaus Rajewsky. „Allgemeiner ausgedrückt: Im Gehirn kommen ausgesprochen viele unterschiedliche ringförmige RNAs vor. Wir leiten aus unseren Daten ab, dass die Ringe dort eine Palette bislang unbekannter biologischer Funktionen übernehmen.“

Originalveröffentlichung:
Piwecka, Monika et al; „Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function“; Science; 2017

Fakten, Hintergründe, Dossiers

  • RNA
  • Gehirn
  • RNA-Sequenzierungen
  • Neuronen
  • CRISPR/Cas9
  • microRNA
  • psychische Erkrankungen
  • Schizophrenie
  • Synapsen
  • circRNA

Mehr über MDC

  • News

    Ein Pilzmedikament hilft der Niere auf die Sprünge

    Bei Fluconazol, einem längst zugelassenen Medikament gegen Pilzbefall, hat ein MDC-Forschungsteam überraschende neue Eigenschaften entdeckt. Die Substanz hilft, Wasser aus dem Urin zu ziehen. Das wiesen die Forscher in Nagern nach. Patienten mit seltenen genetischen Krankheiten, bei denen d ... mehr

    Der Ursprung der B1-Zellen

    Eine neue Studie des MDC könnte eine jahrzehntealte Debatte in der Immunologie beenden: Wie ein Team um Professor Klaus Rajewsky in „Science“ berichtet, sind eigene Vorläuferzellen für die Entwicklung von B1-Zellen nicht notwendig. Die Experimente des Teams sprechen vielmehr dafür, dass ein ... mehr

    Personalisierte Wirkstoffsuche ermöglicht Bekämpfung seltener Krankheiten

    Für bestimmte seltene Krankheiten gibt es keine Heilung, denn der Forschung mangelt es an geeigneten Modellsystemen für Wirkstoff-Tests. Das gilt auch für Erkrankungen, die durch defekte Mitochondrien entstehen, den „Kraftwerken“ der Zelle. Eine personalisierte Screening-Strategie von Forsc ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.