q&more
Meine Merkliste
my.chemie.de  
Login  

News

Hohe Auflösung ohne Teilchenbeschleuniger

Erstmals optische Kohärenztomografie mit XUV-Strahlung im Labormaßstab durchgeführt

Jan-Peter Kasper/FSU

Der Jenaer Physiker Silvio Fuchs in einem Labor am Institut für Optik und Quantenelektronik der Universität Jena.

10.08.2017: Beim Augenarzt gehört sie fast schon zum Standardprogramm: die optische Kohärenztomografie. Mit diesem Bildgebungsverfahren lassen sich durch Infrarotstrahlung die verschiedenen Schichten der Netzhaut durchdringen und dreidimensional genauer untersuchen, ohne dass das Auge überhaupt berührt werden muss. Mediziner können so Erkrankungen wie den Grünen Star ohne Eingriff erkennen.

Doch diese Methode hätte noch weitaus größeres Potenzial für die Naturwissenschaften, wenn man die Wellenlänge der verwendeten Strahlung stärker verkürzen und somit eine höhere Auflösung des Bildes erhalten könnte. Physikern der Friedrich-Schiller-Universität Jena ist genau das jetzt gelungen.

Erste XUV-Kohärenztomografie im Labormaßstab

Die Jenaer Physiker verwendeten für das Verfahren erstmals im eigenen Labor erzeugte extreme ultraviolette Strahlung (XUV) und führten somit die erste XUV-Kohärenztomografie im Labormaßstab durch. Die Wellenlänge dieser Strahlung liegt bei etwa 20 bis 40 Nanometer – von dort ist es also nur noch ein kleiner Schritt bis zum Röntgenbereich. „Um XUV-Strahlung zu erzeugen, sind normalerweise Großgeräte, also Teilchenbeschleuniger wie das Deutsche Elektronen-Synchroton in Hamburg, notwendig“, erklärt Silvio Fuchs vom Institut für Optik und Quantenelektronik der Universität Jena. „Demzufolge wäre eine Untersuchungsmethode dieser Art also sehr aufwendig, teuer und nur für wenige Forscher verfügbar.“ Die Jenaer Physiker konnten diese Methode bereits an Großforschungsanlagen demonstrieren, doch nun haben sie eine Möglichkeit gefunden, sie auch im kleineren Maßstab anwenden zu können.

Dazu fokussierten die Forscher der Uni Jena einen ultrakurzen, sehr intensiven Infrarotlaser in ein Edelgas, etwa Argon oder Neon. „Durch einen Ionisationsprozess werden die Elektronen im Gas beschleunigt“, erklärt Fuchs. „Diese emittieren dann die XUV-Strahlung.“ Zwar sei diese Methode sehr ineffizient, da nur etwa ein Millionstel der Laserstrahlung auch tatsächlich vom infraroten in den extrem ultravioletten Bereich umgewandelt werde, aber dieser Verlust lasse sich durch den Einsatz von sehr starken Laserquellen ausgleichen. „Die Rechnung ist einfach. Je mehr wir hineingeben, desto mehr bekommen wir auch heraus“, sagt der Jenaer Experte.

Starke Bildgebungskontraste entstehen

Der Vorteil der XUV-Kohärenztomografie ist, neben der sehr hohen Auflösung, dass die Strahlung stark mit der Probe interagiert, denn verschiedene Stoffe reagieren unterschiedlich auf das Licht. Einige absorbieren mehr und andere weniger. Es entstehen also starke Bildgebungskontraste, die den Forschern wichtige Informationen, etwa über die materielle Zusammensetzung des zu untersuchenden Objektes, liefern. „Wir haben beispielsweise zerstörungsfrei dreidimensionale Abbildungen von Siliziumchips erstellt, auf denen man das Trägermaterial und aus anderen Materialien bestehende Strukturen gut voneinander unterscheiden kann“, erklärt Silvio Fuchs. „Sollte dieses Verfahren auch in der Biologie Anwendung finden – etwa bei der Untersuchung von Zellen, was eines unserer Ziele ist –, dann wäre dort das vorherige Einfärben der Proben, wie in anderen hochauflösenden Mikroskopiemethoden üblich, nicht nötig. Elemente wie Kohlenstoff, Sauerstoff und Stickstoff würden selbst den Kontrast liefern.“

Bis dahin haben die Physiker der Universität Jena aber noch einige Arbeit vor sich. „Mit unserer bisherigen Lichtquelle erzeugen wir eine Tiefenauflösung von bis zu 24 Nanometer. Das reicht zwar schon aus, um kleine Strukturen, beispielsweise in Halbleitern abzubilden, jedoch liegen die Strukturgrößen aktueller Chips teilweise bereits unter dieser Marke. Mit neuen noch stärkeren Lasern sollte es aber in Zukunft möglich sein, mit der Methode bis zu drei Nanomater Tiefenauflösung zu erreichen“, informiert Fuchs. „Grundsätzlich haben wir gezeigt, dass man diese Methode im Labormaßstab verwenden kann.“ Langfristiges Ziel könne es schließlich sein, ein preisgünstiges und bedienungsfreundliches Gerät zu entwickeln, das Laser und Mikroskop vereint und etwa der Halbleiterindustrie oder biologischen Laboren dieses Bildgebungsverfahren unkompliziert ermöglicht.

Originalveröffentlichung:
Silvio Fuchs et al.; „Optical coherence tomography with nanoscale axial resolution using a laser-driven high-harmonic source“; Optica; (2017) Vol. 4, Issue 8, 903-906

Fakten, Hintergründe, Dossiers

  • Kohärenztomografie
  • Bildgebungsverfahren
  • Uni Jena
  • XUV-Kohärenztomografie
  • Bildgebung

Mehr über Uni Jena

  • News

    Tröpfchen für Tröpfchen kosmische Chemie simulieren

    Zwei Astronomen des Max-Planck-Instituts für Astronomie und der Universität Jena haben eine elegante neue Methode entwickelt, die es erlaubt, die Energie einfacher chemischer Reaktionen unter ähnlichen Bedingungen zu messen wie bei Atomen und Molekülen im frühen Sonnensystem. Die neue Techn ... mehr

    Wie ein Schimmelpilz das Immunsystem lahmlegt

    Er ist überall und für Menschen mit geschwächtem Immunsystem hochgefährlich. Der Schimmelpilz Aspergillus fumigatus kommt praktisch in allen Lebensräumen der Erde vor: als dunkelgraues, faltiges Polster an feuchten Wänden oder in mikroskopisch kleinen Sporen, die durch die Luft fliegen und ... mehr

    Wenn Verwandte von Krankheitserregern Gutes tun

    Es gibt Bakterien, die Wasserstoff und Naturstoffe produzieren, was sowohl für die Umwelt als auch für die Medizin wichtig ist. In Jena hat ein Forschungsteam nun die Fähigkeit zur Wasserstoff- und Naturstoffproduktion in einer Gruppe von Bakterien nachgewiesen, die bis dahin eher als Krank ... mehr

  • q&more Artikel

    Gene auf Zucker

    Der gezielte Transport von DNA und RNA mit Vektoren, meist aus synthetischen Polymeren, in Zellkulturen gehört mittlerweile zum festen Repertoire der biologischen Forschung und Entwicklung, was die Vielzahl an kommerziellen Kits zeigt. Allerdings gestalten sich bisher nicht nur viele Laborv ... mehr

    Sex oder Tod

    Diatomeen sind einzellige Mikroalgen, die aufgrund ihrer filigranen und reich verzierten mineralisierten Zellwand auch als Kieselalgen bezeichnet werden. Trotz ihrer mikroskopisch kleinen Zellen spielen ­diese Algen eine fundamentale ­Rolle für marine Ökosysteme und sind sogar zentrale Akte ... mehr

    Wertgebende Komponenten

    Die Isolierung bioaktiver Pflanzeninhaltsstoffe, ätherischer Öle bzw. pflanzlicher Farb- und Aromastoffe erfordert aufwändige und kostenintensive Verfahren. Oft ist jedoch für verschiedene Anwendungen eine Isolierung der Einzelkomponenten nicht erforderlich, es genügt deren Konzentrierung. ... mehr

  • Autoren

    Prof. Dr. Thomas Heinze

    Thomas Heinze, Jahrgang 1958, studierte Chemie an der FSU Jena, wo er 1985 promovierte und nach dem Postdoc an der Katholischen Universität Leuven (Belgien) 1997 habilitierte. 2001 folgte er dem Ruf auf eine Professur für Makromolekulare Chemie an die Bergische Universität Wuppertal. Seit 2 ... mehr

    Prof. Dr. Dagmar Fischer

    Dagmar Fischer ist approbierte Apothekerin und promovierte 1997 im Fach Pharmazeutische Technologie und Biopharmazie an der Philipps-Universität Marburg. Nach einem Aufenthalt am Texas Tech University Health Sciences Center, USA, sammelte sie mehrere Jahre Erfahrung als Leiterin der Präklin ... mehr

    Prof. Dr. Stefan H. Heinemann

    Stefan H. Heinemann, geb. 1960, studierte Physik an der Universität Göttingen. Nach zweijähriger Forschungszeit an der Yale University, New Haven, USA, promovierte er 1990 am Max-Planck-Institut für biophysikalische Chemie in Göttingen. Nach einem Forschungsaufenthalt an der Standford Unive ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:



Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.