q&more
Meine Merkliste
my.chemie.de  
Login  

News

Energie aus Algen nutzen

Ein Enzym, das helfen könnte, die Produktion von Biokraftstoffen zu beschleunigen

Sousuke Imamura

Die Rotalge C. merolae aus der Kultur im Labor

21.08.2018: Forscher des Tokyo Institute of Technology haben ein Enzym aus der Familie der Glycerin-3-Phosphat-Acyltransferasen (GPAT) als vielversprechendes Ziel zur Steigerung der Biokraftstoffproduktion aus der Rotalge Cyanidioschyzon merolae untersucht.

Algen sind dafür bekannt, große Mengen an Ölen, so genannte Triacylglycerine (TAGs), unter ungünstigen Bedingungen wie Stickstoffmangel zu speichern. Genau zu verstehen, wie sie dies tun, ist für die Biotechnologiebranche von besonderem Interesse, da TAGs in Biodiesel umgewandelt werden können. Dazu untersuchen die Wissenschaftler die einzellige Rotalge C. merolae als Modellorganismus zur Verbesserung der TAG-Produktion.

Eine Studie unter der Leitung von Sousuke Imamura am Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology (Tokyo Tech), hat nun gezeigt, dass ein Enzym namens GPAT1 auch unter normalen Wachstumsbedingungen eine wichtige Rolle bei der TAG-Akkumulation in C. merolae spielt - also ohne Stress.

Bemerkenswert ist, dass die TAG-Produktivität bei einem C. merolae-Stamm, der GPAT1 im Vergleich zum Kontrollstamm überexprimiert, um mehr als das 56fache gesteigert werden konnte, ohne negative Auswirkungen auf das Algenwachstum.

Ihre Ergebnisse, die in wissenschaftlichen Berichten veröffentlicht wurden, knüpfen an frühere Forschungen von Imamura und anderen an, die zwei GPATs, GPAT1 und GPAT2, vorgeschlagen hatten, könnten eng an der TAG-Akkumulation in C. merolae beteiligt sein.

"Unsere Ergebnisse deuten darauf hin, dass die vom GPAT1 katalysierte Reaktion ein ratenbegrenzender Schritt für die TAG-Synthese in C. merolae ist und ein potentielles Ziel für die Verbesserung der TAG-Produktivität in Mikroalgen wäre", sagen die Forscher.

Das Team plant, weiter zu untersuchen, wie GPAT1 und GPAT2 an der TAG-Akkumulation beteiligt sein könnten. Ein wichtiger nächster Schritt wird sein, Transkriptionsfaktoren zu identifizieren, die die Expression einzelner Gene steuern.

"Wenn wir solche Regulatoren identifizieren und ihre Funktion modifizieren können, wird die TAG-Produktivität weiter verbessert, da Transkriptionsfaktoren die Expression einer Vielzahl von Genen, einschließlich GPAT1-bezogener Gene, beeinflussen", sagen sie. "Ein solcher Ansatz, der auf dem grundlegenden molekularen Mechanismus der TAG-Synthese basiert, sollte zu einer erfolgreichen kommerziellen Biokraftstoffproduktion mit Hilfe von Mikroalgen führen."

Originalveröffentlichung:
Satoshi Fukuda, Eri Hirasawa, Tokiaki Takemura, Sota Takahashi, Kaumeel Chokshi, Imran Pancha, Kan Tanaka & Sousuke Imamura; "Accelerated triacylglycerol production without growth inhibition by overexpression of a glycerol-3-phosphate acyltransferase in the unicellular red alga Cyanidioschyzon merolae"; Scientific Reports; 2018

Fakten, Hintergründe, Dossiers

Mehr über Tokyo Institute of Technology

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.