10.05.2017 - Friedrich-Alexander-Universität Erlangen-Nürnberg

Chemisch „maßgeschneidertes“ Wundermaterial Graphen

Erstmals Funktionskontrolle über spektralen Fingerabdruck

Graphen gilt als eines der vielversprechendsten neuen Materialien. Das systematische Einbringen von chemisch gebundenen Atomen und Molekülen zur Kontrolle seiner Eigenschaften ist jedoch nach wie vor eine große Herausforderung. Wissenschaftlern der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), der Universität Wien, der Freien Universität Berlin sowie der Universität Yachay Tech in Ecuador ist es nun erstmals gelungen, den spektralen Fingerabdruck solcher Verbindungen experimentell und theoretisch präzise zu verifizieren.

Zweidimensionales Graphen besteht aus einer einzelnen Schicht von Kohlenstoffatomen. Es leitet besonders gut Elektrizität sowie Wärme, ist durchsichtig und dabei gleichzeitig biegsam und fest. Außerdem lässt sich zum Beispiel durch das Einbringen von chemisch gebundenen Atomen und Molekülen in die Graphenstruktur – so genannte Funktionszentren – die elektrische Leitfähigkeit zwischen einem Metall und einem Halbleiter kontinuierlich verändern. Durch diese besonderen Eigenschaften bietet Graphen eine Vielzahl an künftigen Anwendungsmöglichkeiten, wie beispielsweise in der Optoelektronik oder für ultraschnelle Bauelemente in der Halbleiterindustrie. Der Einsatz von Graphen in der Halbleiterindustrie kann nur gelingen, wenn Eigenschaften wie Leitfähigkeit, Größe und Störung der Struktur durch die Funktionszentren bereits während der Synthese von Graphen festgelegt werden können.

In einer internationalen Kooperation um Prof. Dr. Andreas Hirsch, Lehrstuhl für Organische Chemie II, Prof. Dr. Thomas Pichler, Universität Wien, Prof. Dr. Stephanie Reich, Freie Universität Berlin, und Prof. Dr. Julio Chacon-Torres, Yachay Tech University, ist es den Forschern mit einem neu entwickelten Versuchsaufbau ein entscheidender Durchbruch gelungen: Über Lichtstreuung haben sie erstmals Schwingungsspektren als spezifischen Fingerabdruck von stufenweise chemisch modifiziertem Graphen identifiziert. Diese so gewonnene und theoretisch bestätigte spektrale Signatur ermöglicht es zukünftig, sowohl die Art als auch die Anzahl der Funktionszentren schnell und präzise zu bestimmen. Unter den verwendeten Reaktionen wurde zum Beispiel Wasserstoff an Graphen chemisch gebunden. Dies erfolgte über eine kontrollierte chemische Reaktion von Verbindungen, in denen Ionen in den Kohlenstoff Graphit eingelagert sind, mit Wasser.

„Diese Methode der in situ Ramanspektroskopie ist eine sehr effektive Möglichkeit, mit der schon während der Materialherstellung schnell, kontaktfrei und großflächig die Funktion von Graphen kontrolliert werden kann“, sagt Julio Chacon, einer der zwei Hauptautoren der Studie. Dadurch wird es möglich, maßgeschneiderte Materialien mit kontrollierten elektrischen Transporteigenschaften zu erhalten und für die Anwendung in der Halbleiterindustrie zu nutzen.

Mehr über Friedrich-Alexander-Universität Erlangen-Nürnberg

  • News

    Nano-Rost: Smartes Additiv zur Temperaturüberwachung

    Die richtige Temperatur ist entscheidend – ob bei technischen Prozessen, für die Qualität von Lebensmitteln und Medikamenten oder für die Lebenszeit von Elektronikbauteilen und Batterien. Hierzu erfassen Temperaturindikatoren (un)erwünschte Temperaturerhöhungen, die später ausgelesen werden ... mehr

    Was haben Kaffee, Rotwein und Tinte gemein?

    Wer schon mal eine Tasse Kaffee umgestoßen hat weiß, dass Kaffee in einem außergewöhnlichen Muster trocknet: Der Fleck ist in der Mitte heller, wird nach außen hin aber von einem dunkleren Rand umschlossen – einem sogenannten Kaffeering. Ein Forschungsteam um Prof. Dr. Nicolas Vogel, der an ... mehr

    Per Kapsel durch die Blutbahn

    Bakterien im Darm verpacken verschiedenste ihrer Biomoleküle in kleine Kapseln. Diese werden vom Blutkreislauf in verschiedene Organe des Körpers transportiert und sogar von Nervenzellen des Gehirns aufgenommen und verarbeitet. Dies hat jetzt erstmals ein Team von Forscherinnen und Forscher ... mehr

  • q&more Artikel

    Aromastoffübergang in Muttermilch

    „Der Mensch ist, was er isst.“ Das Zitat des deutschen Philosophen Ludwig Feuerbach (1804–1872) lässt sich auch auf die Ernährung unseres Nachwuchses übertragen: Die Ernährungsgewohnheiten der Mutter spiegeln sich im Aromaprofil der Muttermilch wieder [1, 2] und können dadurch ... mehr

    Bunte Fehlgerüche in Künstlerfarben

    Farben auf Acrylbasis gehören zu den am häufigsten verwendeten Farben. Obwohl die Farben auf Wasserbasis hergestellt werden können und dabei geringe Anteile an flüchtigen Substanzen in der Produktion zum Einsatz kommen, weisen Acrylfarben dennoch häufig einen starken Eigengeruch auf. Bislan ... mehr

    Modellierte Medikamente

    Computergestütztes Medikamentendesign (CADD) ist nichts Neues. Das Journal of ­Computer-Aided Molecular Design (Springer) wurde 1987 gegründet, als die 500 weltweit schnellsten Computer langsamer als ein heutiges Smartphone waren. Damit ist dieses Feld ein Vierteljahrhundert alt. mehr

  • Autoren

    Dr. Helene M. Loos

    Helene Loos studierte Lebensmitteltechnologie an der Universität Hohenheim und promovierte 2015 im Fach Lebensmittelchemie an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU). Während ihrer Promotion untersuchte sie bei Prof. Dr. Andrea Büttner und Dr. Benoist Schaal am Fraunhofe ... mehr

    Diana Owsienko

    Diana Owsienko, Jahrgang 1994, studierte von 2013 bis 2017 Lebensmittelchemie an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) und absolvierte von 2017 bis 2018 ihre wissenschaftliche Abschlussarbeit am Fraunhofer-Institut für Verfahrenstechnik und Verpackung (IVV) in Freising ... mehr

    Nadine I. Goldenstein

    Nadine Goldenstein studierte Meeresumweltwissenschaften an der Universität Bremen. Im Anschluss arbeitete sie als Wissenschaftlerin im Bereich der organischen Biogeochemie am MARUM, Bremen, wo sie sich intensiv mit der Erforschung mikrobieller Stoffwechselprozesse, mit Fokus auf den globale ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: