q&more
Meine Merkliste
my.chemie.de  
Login  

News

Wirkung neuer Gentherapien effizienter prüfen

22.03.2017: Dank eines neuen Zellmodels können im Labor neue Gentherapieansätze für die erbliche Immundefektkrankheit Septische Granulomatose rascher und kostengünstiger auf ihre Wirksamkeit getestet werden. Forschenden der Universität Zürich und des Kinderspitals Zürich gelang dies mithilfe der als «Genschere» bezeichneten CRISPR/Cas9-Technologie. Ziel ist es, in naher Zukunft schwerkranke Patienten mit neuen Ansätzen zu behandeln.

Die Septische Granulomatose ist eine angeborene Erkrankung des Immunsystems. Wegen eines Gendefekts sind die Fresszellen der betroffenen Patienten nicht in der Lage, aufgenommene Bakterien und Schimmelpilze abzutöten. Dies führt zu lebensbedrohlichen Infektionen und überschiessenden Entzündungsreaktionen mit zahlreichen schweren Folgeerscheinungen. Die Erkrankung kann durch die Transplantation blutbildender Stammzellen aus dem Knochenmark von gesunden Spendern geheilt werden. Findet sich kein passender Spender, kann derzeit an wenigen Orten weltweit eine Gentherapie durchgeführt werden. Bevor diese bei Patienten eingesetzt wird, muss im Labor an menschlichen Zellen gezeigt werden, dass die Gentherapie wirkt. Dazu sind Zellmodelle unerlässlich.

Besseres Zellmodell dank «Genschere» entwickelt

Nun hat ein Forscherteam unter der Leitung von Janine Reichenbach, UZH-Professorin und Co-Leiterin​ der Abteilung Immunologie am Universitäts-Kinderspital Zürich, ein neues Zellmodell entwickelt, mit dem sich die Wirkung neuer Gentherapien viel effizienter überprüfen lässt. «Mithilfe der Crispr/Cas9-Technologie haben wir eine menschliche Zelllinie so verändert, dass die Blutzellen jene Genveränderung aufweisen, wie sie für eine bestimmte Form der Septischen Granulomatose typisch ist», erklärt die Kinderärztin und Immunologin. Dadurch wiederspiegeln die veränderten Zellen die Funktionsweise der Krankheit. Bisher mussten die Wissenschaftler dazu auf Hautzellen der Patienten zurückgreifen, die sie im Labor zu Stammzellen umprogrammierten. Dieses Vorgehen ist aufwändig, zeit- und kostenintensiv. «Mit unserem neuen Testsystem geht das schneller und preiswerter, was eine rasche Entwicklung neuer Gentherapien für betroffene Patienten erlaubt», so Reichenbach.

Bereits vor rund zehn Jahren gelang es dem Team von Janine Reichenbach – damals unter der Leitung des mittlerweile emeritierten UZH-Professors Reinhard Seger – weltweit erstmals zwei Kinder mit Septischer Granulomatose klinisch erfolgreich mittels Gentherapie zu behandeln. Das Prinzip: Dem Patienten werden blutbildende Stammzellen aus dem Knochenmark entnommen, im Labor mit einer funktionsfähigen Kopie der fehlerhaften Gens ausgestattet und zurück in Blut infundiert. Die korrigierten Blutstammzellen nisten sich im Knochenmark ein und bilden gesunde Immunzellen.

Neue Genfähren machen Gentherapie sicherer

Um die gesunde Genkopie in kranke Zellen einzuschleusen, werden bisher modifizierte künstliche Viren als Transportvehikel für die korrigierenden Gene verwendet. Frühere Gentherapien mit mittlerweile überholten Genkorrektursystemen führten bei einigen Patienten in europäischen Studien neben der Heilung der Grundkrankheit zur Entwicklung von bösartigen Krebszellen. Reichenbachs Team arbeitet aktuell mit einer neuen, verbesserten Genfähre: «Wir verfügen nun über sogenannte lentivirale selbst-inaktivierende Gentherapiesysteme, die effizient sind und vor allem sicherer funktionieren». Das Kinderspital Zürich ist eines von drei europäischen Zentren, das im Rahmen einer internationalen klinischen Phase I/II-Studie diese neuen Gentherapien zur Behandlung der Septischen Granulomatose einsetzen kann (EU-FP7 Programm NET4CGD).

Zukunft der Gentherapie liegt in präziser Reparatur defekter Gene

Für das Team von Janine Reichenbach sind solche neuen Genfähren nur ein Zwischenschritt. In Zukunft sollen Gendefekte nicht mehr durch Hinzufügen eines funktionstüchtigen Gens mithilfe von viralen Genfähren therapiert werden, sondern mittels «Genom-Editing» zielgenau repariert werden. Das Stichwort heisst auch hier Crispr/Cas9. Bis diese «Präzisions-Genchirurgie» bereit ist für klinische Anwendungen, dürften allerdings noch ca. fünf bis sechs Jahre vergehen. Reichenbach zeigt sich optimistisch: «Im Bereich der Hochschulmedizin Zürich verfügen wir am hiesigen Standort über das technische, wissenschaftliche und medizinische Know-how, um zukünftig rascher neue Therapien für Patienten mit schweren erblichen Erkrankungen zu entwickeln und die UZH als internationales Kompetenzzentrum für Gen- und Zelltherapien zu etablieren.»

Originalveröffentlichung:
Dominik Wrona, Ulrich Siler, Janine Reichenbach; "CRISPR/Cas9-generated p47phox-deficient cell line for Chronic Granulomatous Disease gene therapy vector development"; Scientific Reports; March 13, 2017.

Fakten, Hintergründe, Dossiers

  • Gentherapie
  • Zellmodelle
  • septische Granulomatose
  • Wirksamkeitstests
  • CRISPR-Cas9-Technik
  • CRISPR
  • Genschere
  • Gendefekte
  • Fresszellen
  • CRISPR/Cas9

Mehr über Universität Zürich

  • News

    Brustkrebs-Antikörper einfach und schnell radioaktiv markieren

    Radioaktive Antikörper gegen Krebszellen werden für die PET-Bildgebung in der medizinischen Diagnostik oder für die gezielte Radioimmuntherapie eingesetzt. Forscher der Universität Zürich haben eine neue Methode entwickelt, um Antikörper mithilfe von UV-Licht radioaktiv zu markieren. In wen ... mehr

    Genaue Entschlüsselung von Brustkrebszellen könnte neue Therapie eröffnen

    Forscher der Universität Zürich und von IBM Research haben die unterschiedliche Zusammensetzung aus Krebs- und Immunzellen von über hundert Brusttumoren erforscht. Ihre Erkenntnis: Aggressive Tumore werden häufig von einer einzigen Tumorzellart dominiert. Sind dazu noch bestimmte Immunzelle ... mehr

    Wasser, das nie zu Eis wird

    Gibt es Wasser, das selbst bei minus 263 Grad Celsius nicht zu Eis gefriert? Ja, das gibt es, sagen Forscher der ETH Zürich und der Universität Zürich. Nämlich dann, wenn es in wenige Nanometer dünnen Kanälen aus Lipiden «gefangen» ist. Eiswürfel herzustellen ist simpel: Man nehme eine Eisw ... mehr

  • q&more Artikel

    Vom Nachtschwärmer zur Lerche

    Die meisten Menschen kommen aufgrund ihrer Biochronologie entweder als Lerche (Frühaufsteher) oder Eule (Morgenmuffel) zur Welt und in der Pubertät entwickeln sie sich zum Nachtschwärmer. Mit dem 20. Lebensjahr tritt dann eine Wende ein und der Schlaf- und Wachrhythmus verschiebt sich konti ... mehr

  • Autoren

    Dr. Steven A. Brown

    Steven B. Brown studierte Biochemie am Harvard College, Cambridge, Massachusetts, USA. 1997 promovierte er im Fachgebiet Biological Chemistry and Molecular Pharmacology, Harvard University, Cambridge, Massachusetts, USA. Von 1998-2005 war er als Postdoc am Institut für Molekulare Biologie a ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.