16.03.2017 - Forschungszentrum Jülich GmbH

Neue Elektronenquelle zur Materialbestimmung

Jülicher Physikern ist es gelungen, die Bestimmung von Materialeigenschaften schneller und effizienter zu machen. Sie entwickelten eine spezielle Elektronenquelle, die die Vermessung von Materialoberflächen stark vereinfacht und die Dauer einer Messung von Tagen auf Minuten verkürzt.

Wie lassen sich Solarzellen effizienter machen? Wie lässt sich Sonnen- und Windenergie am besten für den späteren Bedarf speichern? Technologien für die Energiewende benötigen maßgeschneiderte Materialien, die sowohl preiswert als auch effizient sind. Ein wichtiges Werkzeug für die Suche nach diesen Materialien ist die hochauflösende Elektronen-Energieverlust-Spektroskopie, oder kurz HREELS. Bei dieser Methode wird der zu untersuchende Werkstoff mit einem Strahl von Elektronen beschossen. Die Elektronen prallen von der Oberfläche des Materials ab und verlieren dabei einen Teil ihrer Energie. Dieser Energieverlust kann gemessen werden – und erlaubt damit Rückschlüsse auf die Eigenschaften des Materials, wie etwa seine Fähigkeit Strom oder Wärme zu leiten.

HREELS-Messungen können allerdings sehr zeitaufwändig sein. "Der wirklich interessante Teil des Energieverlusts der Elektronen ist winkelabhängig", erklärt Dr. François Bocquet vom Jülicher Peter Grünberg Institut. "Deshalb muss er aus verschiedenen Richtungen gemessen werden. Bisher war es nur möglich, einen Energieverlust für einen Winkel auf einmal zu messen. Die Messungen für eine einzelne Probe konnten einen ganzen Tag in Anspruch nehmen, unter Umständen sogar länger."

Nun haben François Bocquet und seine Kollegen eine Methode entwickelt, mit der eine Probe innerhalb von Minuten vermessen werden kann. Zwei zusätzliche Komponenten an ihrem HREELS-Instrument vereinfachen ihre Messungen. "Die erste ist ein halbkugel-förmiger Elektronen-Analysator, der bereits seit zehn Jahren erfolgreich in winkelauflösender Photoelektron-Spektroskopie verwendet wird", erklärt Bocquet. "Die zweite ist eine modifizierte Elektronenquelle, angepasst an den Elektronen-Analysator, die hier bei uns am Institut entwickelt wurde." Diese wird mit einer eigens dafür entwickelten Software optimiert. Sie sorgt dafür, dass die Elektronen im Strahl die gewünschte kinetische Energie haben und auf einen sehr kleinen Bereich der Probe fokussiert werden. Dadurch kann der Analysator optimal genutzt werden – und ermöglicht eine gleichzeitige Messung von Energieverlusten aus verschiedenen Winkeln.

"Diese Neuerungen erlauben es uns, nun auch Proben zu untersuchen, die für die bisherigen Methoden zu instabil oder zu empfindlich waren", erklärt François Bocquet, dessen Forschung auch von dem Impuls- und Vernetzungsfonds der Helmholtz-Gemeinschaft gefördert wird. Die Wissenschaftler arbeiten üblicherweise unter Vakuumbedingungen, damit die untersuchten Oberflächen nicht kontaminiert werden. "Da jedoch kein Vakuum jemals perfekt ist, mussten wir die Messungen gewöhnlich nach wenigen Stunden stoppen, und die Probe neu vorbereiten. Das ist nun mit der schnelleren Methode nicht mehr nötig", freut sich Bocquet.

Fakten, Hintergründe, Dossiers

  • Elektronenenergieve…
  • Photoelektronenspek…
  • Elektronen
  • Helmholtz
  • Elektronenquellen

Mehr über Forschungszentrum Jülich

  • News

    Ein neues Werkzeug für die Kryo-Elektronenmikroskopie

    Forschende des Forschungszentrums Jülich und der Heinrich-Heine-Universität Düsseldorf um Prof. Dr. Carsten Sachse machen Biomoleküle mittels Kryo-Elektronenmikroskopie, kurz: Kryo-EM, auf atomarer Ebene sichtbar. In einer jetzt in der Fachzeitschrift Nature Methods erschienenen Publikation ... mehr

    Synapsen als Vorbild: Festkörperspeicher in neuromorphen Schaltungen

    Sie sind um ein Vielfaches schneller als Flash-Speicher und benötigen deutlich weniger Energie: Memristive Speicherzellen könnten die Energieeffizienz neuromorpher Computer revolutionieren. In diesen Rechnern, die sich die Arbeitsweise des menschlichen Gehirns zum Vorbild nehmen, funktionie ... mehr

    Alzheimerforschung: Neue Erkenntnisse zur Bildung schädlicher Proteinklümpchen

    Kleine Zusammenlagerungen von Proteinen, sogenannte Aβ-Oligomere, gelten als Hauptverdächtige für die Entstehung der Alzheimer-Demenz. Wo und unter welchen Bedingungen die schädlichen Verklumpungen entstehen, ist bislang jedoch noch unklar. Forschende der Heinrich-Heine-Universität Düsseldo ... mehr

  • q&more Artikel

    Makromolekulare Umgebungen beeinflussen Proteine

    Eine intensive Wechselwirkung von Proteinen mit anderen Makromolekülen kann wichtige Eigenschaften von Proteinen wie z. B. die Translationsbeweglichkeit oder den Konformationszustand signifi kant verändern. mehr

    Koffein-Kick

    Koffein ist die weltweit am weitesten verbreitete psycho­aktive Substanz. Sie findet sich als Wirkstoff in Getränken wie Kaffee, Tee und sog. Energy Drinks. Koffein kann Vigilanz und Aufmerksamkeit erhöhen, Schläfrigkeit reduzieren und die kognitive Leistungsfähigkeit steigern. Seine neurob ... mehr

  • Autoren

    Prof. Dr. Jörg Fitter

    Jg. 1963, studierte Physik an der Universität Hamburg. Nach seiner Promotion an der FU Berlin war er im Bereich der Neutronenstreuung und der molekularen Biophysik am HahnMeitnerInstitut in Berlin und am Forschungszentrum Jülich tätig. Er habilitierte sich in der Physikalischen Biologie der ... mehr

    Dr. David Elmenhorst

    David Elmenhorst, geb. 1975, studierte Medizin in Aachen und promovierte am Deutschen Zentrum für Luft- und Raumfahrt in Köln im Bereich der Schlafforschung. 2008/2009 war er Gastwissenschaftler am Brain Imaging Center des Montreal Neuro­logical Institut in Kanada. Seit 2003 ist er in der A ... mehr

    Prof. Dr. Andreas Bauer

    Andreas Bauer, geb. 1962, studierte Medizin und Philo­sophie in Aachen, Köln und Düsseldorf, wo er auf dem Gebiet der Neurorezeptorautoradiografie promovierte. Seine Facharztausbildung absolvierte er an der Universitätsklinik Köln, er habilitierte an der Universität Düsseldorf im Fach Neuro ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: