q&more
Meine Merkliste
my.chemie.de  
Login  

News

Weltweit genaueste und stabilste transportable optische Uhr

Optische Strontiumuhr der PTB in einem PKW-Anhänger, gespickt mit Hightech-Physik

PTB

Ein Anhänger, gespickt mit Hightech-Physik: die transportable optische Uhr der PTB

PTB

Ein Anhänger, gespickt mit Hightech-Physik: die transportable optische Uhr der PTB

16.02.2017: Optische Uhren sind noch genauer als die Cäsium-Atomuhren, die gegenwärtig die Zeit „machen“. Außerdem benötigen sie nur ein Hundertstel der Messdauer, um eine bestimmte Messgenauigkeit zu erreichen. Damit könnten sie in Zukunft nicht nur die Grundlage für eine neue Definition der SI-Basiseinheit Sekunde liefern, sondern ganz konkret zu besseren Messmöglichkeiten etwa in der Geodäsie führen. Wissenschaftler der Physikalisch-Technischen Bundesanstalt (PTB) haben jetzt erstmals eine transportable optische Strontium-Gitteruhr präsentiert und erfolgreich getestet, die für weltweite Vergleiche optischer Uhren, geodätische Anwendungen und Grundlagenuntersuchungen in der Physik geeignet ist.

Optische Uhren gelten als heiße Kandidaten für eine neue Definition der SI-Basiseinheit Sekunde. Dass es bei der anstehenden SI-Neudefinition im Herbst 2018 vorerst noch bei den Cäsium-Atomuhren bleibt, hat nur den Grund, dass der Nachfolger noch nicht klar feststeht. Es gibt schlicht zu viele konkurrierende optische Uhren. Noch ist nicht klar, wer das Rennen machen wird – sprich, ob die Definition schließlich auf einer Eigenschaft des Strontium-, Ytterbium-, Aluminium- oder eines anderen Atoms beruhen wird. Die entsprechenden optischen Uhren liefern sich schon seit Jahren spannende Kopf-an-Kopf-Rennen in den unterschiedlichen Disziplinen: etwa bei der Genauigkeit (wobei es um möglichst kleine Unsicherheiten geht) oder bei der Stabilität (wie lange man messen muss, um zuverlässige Messdaten zu bekommen).

Der gegenwärtige Sieger in der Disziplin „Transportabiltät“ hat alle Konkurrenten hinter sich gelassen. „Mit einer Unsicherheit von 7,4 · 10−17 ist unsere transportable optische Strontium-Gitteruhr so nah an die besten stationären optischen Uhren herangekommen, wie wir es für gute Uhrenvergleiche brauchen“, erklärt Arbeitsgruppenleiter Christian Lisdat. Und richtig gute Uhrenvergleiche, weiß der Physiker, sind heutzutage nur in den wenigen Fällen möglich, in denen Uhren in demselben Labor stehen oder über Glasfaserverbindungen gekoppelt sind – wie etwa bei der Glasfaserstrecke zwischen Braunschweig und Paris. „In allen anderen Fällen müssen Sie die klassischen Satellitenvergleiche wie zwischen Cäsium-Atomuhren nutzen – aber Sie verlieren den Genauigkeitsvorteil, den eine optische Uhr bietet“, erklärt Lisdat. Ab jetzt kann eine optische Uhr im Prinzip einfach zu ihrem Gegenstück gefahren und die beiden miteinander verglichen werden. So etwas ist kein Selbstzweck, sondern praktische Notwendigkeit: Nur innerhalb eines globalen Zusammenschlusses können Uhren den weltweiten Finanz-, Kommunikations-, Satellitennavigations- und Energieversorgungssystemen die benötigten genauen Zeitsignale liefern.

Auch hinsichtlich der Stabilität (ebenfalls eine starke Seite der stationären Strontium-Gitteruhr der PTB) hat diese transportable Variante ihre Konkurrenten so weit überholt, dass sie Geodäten aufhorchen lässt: „Wir erreichen bereits nach Messungen von weniger als einer Stunde den Bereich von wenigen 10−17, der notwendig ist, um Höhenunterschiede von ungefähr 10 Zentimetern zu messen. Mit zwei Uhren und einer Verbindung geht dies auch zwischen sehr weit entfernten Zielen, etwa über einen Kontinent“. Weil eine solche optische Uhr damit etwas in einem Schritt schafft, wofür bisherige geodätische Methoden viele Einzelschritte benötigen, arbeiten Lisdat und seine Kollegen schon seit einigen Jahren eng mit Wissenschaftlern der Leibniz Universität Hannover im DFG-Sonderforschungsbereich 1128 geo-Q zusammen.

Ein Blick in den klimatisierten Autoanhänger, in dem die transportable Uhr untergebracht ist, offenbart ein Gewirr aus Kabeln, Lasern und Computern. „Es war keine triviale Aufgabe, alle Lasersysteme zum Herunterkühlen und Einfangen der Atome mitsamt der nötigen Elektronik auf solch kleinem Raum unterzubringen“, erläutert Christian Lisdat. Als besonders kompliziert erwies sich die transportable Version des Abfragelasers (der also die richtige Frequenz der Strontiumatome ermittelt). Aber schließlich konnte der kleine Anhänger, der außen die Aufschrift der verwendeten optischen Uhrenfrequenz trägt, fertiggestellt und bei zwei Messkampagnen außerhalb des PTB-Geländes getestet werden. Obwohl noch bessere Komponenten schon in der Entwicklung sind, ist diese Uhr bereits jetzt zehnmal genauer und hundertmal stabiler als die besten transportablen Cäsium-Fontänenuhren.

Damit ist die transportable optische Uhr der PTB bereit für geodätische Höhenmessungen, internationale Uhrenvergleiche, Präzisionsmessungen von Fundamentalkonstanten – und macht einen wichtigen Schritt für Anwendungen im Weltraum.

Originalveröffentlichung:
S. B. Koller, J. Grotti, S. Vogt, A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr, C. Lisdat; "A transportable optical lattice clock with 7 × 10−17 uncertainty"; Phys. Rev. Lett.; 118, 073601 (2017)

Fakten, Hintergründe, Dossiers

  • optische Uhren
  • Atomuhren
  • Physikalisch-Techni…
  • Strontium

Mehr über Physikalisch-Technische Bundesanstalt

  • News

    Toxischen Elementen in Arzneimitteln nicht die Spur einer Chance lassen

    Blei, Cadmium, Quecksilber oder Arsen gehören nicht in Arzneimittel. Internationale Bestimmungen sind daher bereits strenger geworden und fordern vergleichbare Messungen. Da ist es sinnvoll, hochgenaue Referenzlösungen mit definierten Gehalten dieser vier Stoffe zu verwenden und somit die M ... mehr

    Industrietaugliche Waage die sich ohne Gewichtsstücke kalibrieren lässt

    Angestoßen wird die Entwicklung der Planck-Waage durch die bevorstehende Neudefinition des Kilogramm: Das Urkilogramm, ein kleiner Metallzylinder in einem Safe nahe Paris, wird bald ausgedient haben. An seine Stelle rückt eine Kilogramm-Definition auf Grundlage einer unzerstörbaren und unve ... mehr

    Das neue Kelvin kann kommen

    Noch ist das Kelvin buchstäblich auf Wasser gebaut – genauer: auf dem Tripelpunkt von Wasser. Damit ist die Basiseinheit der Temperatur abhängig von einem Material, dessen Eigenschaften schwanken können. Doch das wird sich ändern. Im Herbst 2018 wird das Kelvin, genauso wie alle anderen Ein ... mehr

  • q&more Artikel

    Naturkonstanten als Hauptdarsteller

    Der 20. Mai 2019 ist ein besonderer Tag. Denn ab diesem Tag sind die gewohnten Definitionen dessen, was ein Kilogramm und ein Mol, ein Ampere und ein Kelvin sein sollen, Geschichte. Die Zukunft im Internationalen Einheitensystem sieht vielmehr so aus, dass von nun an Naturkonstanten die Hau ... mehr

    Die Messung der Avogadro-Konstante

    Seit dem 20. Mai 2019 ist die Masseneinheit Kilogramm nicht mehr durch den Internationalen Kilogramm-Prototypen definiert, sondern durch den Zahlenwert des Planck’schen Wirkungsquantums, der wichtigsten Fundamentalkonstante aus der Quantenphysik. Voraussetzung für diese Definition war die M ... mehr

    Die beste Messung

    Seit über 30 Jahren sucht man nach Wegen, das Kilogramm über eine atomare Konstante oder eine physikalische Fundamentalkonstante zu definieren. Zwei Messmethoden sind inzwischen so weit fortge­schritten, dass eine Neudefinition in den kommenden Jahren wahrscheinlich ist: das Wattwaagen-Expe ... mehr

  • Autoren

    Dr. Jens Simon

    Jens Simon, Jahrgang 1962, hat zwei akademische Wege mit Stationen in Braunschweig, Jülich und Köln verfolgt. Der eine Weg führte zu einer Promotion an der Technischen Universität Braunschweig in germanistischer Linguistik über die Sprache Arno Schmidts. Der andere Weg führte zu einer Promo ... mehr

    Prof. Dr. Joachim H. Ullrich

    Joachim Ullrich, Jahrgang 1956, studierte Geophysik und Physik an der Universität Frankfurt, wo er nach dem Diplom 1983 auch 1987 promovierte und sich 1994 habilitierte. Von 1989 bis 1997 war er als wissenschaftlicher Angestellter an der Gesellschaft für Schwerionenforschung in Darmstadt tä ... mehr

    Dr. Horst Bettin

    Horst Bettin, Jahrgang 1955, studierte Physik an der Technischen Universität Braunschweig und promovierte dort am Institut für Halbleiterphysik und Optik. Im Jahr 1990 trat er in die Physikalisch-Technische Bundesanstalt ein und forschte hauptsächlich auf dem Gebiet der Dichtemessungen. Auß ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.