q&more
Meine Merkliste
my.chemie.de  
Login  

News

Sortiermaschine für Atome

© Carsten Robens/Uni Bonn

Der Spin der blauen Atome unterscheidet sich von dem der roten Atome. Der rot dargestellte Laserstrahl hält daher nur die roten Atome fest, während die blauen vom anders polarisierten Laserstrahl an eine beliebige Position transportiert werden können.

© Carsten Robens/Uni Bonn

Die Fluoreszenzmikroskop-Aufnahmen verdeutlichen den Sortiervorgang.

© Foto: Volker Lannert/Uni Bonn

Mit diesem Aufbau fangen und manipulieren die Physiker der Universität Bonn einzelne neutrale Atome auf optischen Förderbändern (von links): Dr. Andrea Alberti, Carsten Robens, Prof. Dr. Dieter Meschede, Dr. Wolfgang Alt und Stefan Brakhane.

13.02.2017: Physiker der Universität Bonn haben eine wichtige Hürde auf dem Weg zum Quantencomputer genommen: In einer aktuellen Studie stellen sie eine Methode vor, mit der sie große Zahlen von Atomen sehr schnell und präzise sortieren können.

Mal angenommen, Sie stehen im Supermarkt und möchten Apfelsaft kaufen. Leider sind alle Kisten halb leer, weil andere Kunden wahllos einzelne Flaschen entnommen haben. Sie füllen daher Ihre Kiste mühselig Flasche für Flasche auf. Doch halt: Die Nachbarkiste ist ja genau gegengleich besetzt! Wo bei Ihrer Kiste Lücken sind, stehen dort Flaschen. Könnten Sie diese Flaschen auf einen Schlag anheben und in Ihre Kiste setzen, wäre diese danach direkt voll. Sie könnten sich also viel Arbeit ersparen.

Für halbleere Getränkekisten gibt es eine solche Lösung leider (noch) nicht. Physiker der Universität Bonn wollen aber künftig auf diese Weise Tausende von Atomen beliebig sortieren – und das in Sekundenschnelle. Rund um den Globus suchen Wissenschaftler momentan nach Methoden, mit denen solche Sortiervorgänge im Mikrokosmos möglich sind. Der Vorschlag der Bonner Forscher könnte etwa die Entwicklung künftiger Quantencomputer einen deutlichen Schritt voran bringen. In diesen lässt man Atome gezielt miteinander interagieren, um so für Berechnungen quantenmechanische Effekte ausnutzen zu können. Dazu müssen die Teilchen in räumliche Nähe zueinander gebracht werden.

Magnetisierte Atome auf optischen Förderbändern

Die Physiker nutzen für ihre Sortiermaschine eine besondere Eigenschaft von Atomen: Diese drehen sich wie kleine Kreisel um ihre eigene Achse. Die Drehrichtung – der Spin – lässt sich mit Mikrowellen beeinflussen. Die Physiker versetzten so zunächst alle Atome in ihrem Experiment in dieselbe Drehrichtung.

In diesem Zustand konnten sie die Teilchen auf einen Laserstrahl laden. Zuvor mussten sie den Laser aber so manipulieren, dass er zum Spin ihrer Teilchen passte, ein Vorgang, der Polarisation genannt wird. Die Atome wurden nun von dem polarisierten Laserstrahl so festgehalten, dass sie sich nicht bewegen konnten. Dabei besetzte jedes Teilchen auf dem Laserstrahl einen bestimmten Platz – ähnlich wie die Flaschen in der Kiste.

Wie in der Getränkebox blieben allerdings auch im Laserstrahl einige Plätze frei. „Wir haben daher bei einzelnen Atomen ganz gezielt die Drehrichtung umgedreht“, erklärt Dr. Andrea Alberti, Projektleiter am Institut für Angewandte Physik der Universität Bonn. „Diese Teilchen waren daraufhin nicht mehr von unserem Laserstrahl gefangen. Wir konnten sie aber mit einem zweiten, anders polarisierten Laserstrahl greifen und damit nach Wunsch verschieben.“

Der Transport-Strahl kann im Prinzip beliebig viele Atome gleichzeitig bewegen. Diese behalten währenddessen ihre Position zueinander bei. Ähnlich wie im Beispiel mit den Flaschen lassen sich so also mehrere Teilchen auf einmal anheben und auf einen Rutsch in die Lücken zwischen anderen Atomen setzen. „Unsere Sortiermethode ist dadurch extrem effizient“, erklärt der Erstautor der Studie Carsten Robens. „Es macht keinen großen Unterschied, ob wir hundert oder tausend Atome sortieren – der Zeitaufwand steigt nur unerheblich an.“ In ihrem jetzt publizierten Experiment arbeiteten die Forscher zurzeit nur mit vier Atomen.

Die Methode eignet sich im Prinzip, um beliebige Atommuster zu erzeugen. Dadurch ist sie auch für Festkörperphysiker interessant, da sich mit ihr zum Beispiel das Verhalten von Halbleiterkristallen unter bestimmten Bedingungen untersuchen lässt.

Originalveröffentlichung:
Carsten Robens, Jonathan Zopes, Wolfgang Alt, Stefan Brakhane, Dieter Meschede, and Andrea Alberti; "Low-Entropy States of Neutral Atoms in Polarization-Synthesized Optical Lattices"; Phys. Rev. Lett.; 2017

Fakten, Hintergründe, Dossiers

  • Quantencomputer
  • Atome
  • Polarisation

Mehr über Universität Bonn

  • News

    COVID-19 hat etliche Gesichter

    Die vom Coronavirus SARS-CoV-2 verursachte Erkrankung COVID-19 umfasst nach aktuellen Untersuchungen mindestens fünf verschiedene Varianten. Diese unterscheiden sich darin, wie das Immunsystem auf die Infektion reagiert. Forschende des Deutschen Zentrums für Neurodegenerative Erkrankungen ( ... mehr

    Maßgeschneiderte menschliche Stammzellen

    Induzierte pluripotente Stammzellen (iPS) haben das Potenzial, sich in die unterschiedlichsten Zelltypen und Gewebe zu verwandeln. Die „Kochrezepte“ für diese Umwandlung sind jedoch häufig kompliziert und schwer umsetzbar. Forscher des Zentrums für Regenerative Therapien Dresden (CRTD) der ... mehr

    Erbanlage bewahrt Immunsystem vor Alterung

    Eine Erbanlage, die bei der Entwicklung des Herzens im entstehenden Kind eine Rolle spielt, scheint auch im menschlichen Immunsystem eine Schlüsselfunktion zu übernehmen. Das belegt eine neue Studie unter Federführung der Universität Bonn. Wenn das Gen nicht aktiv genug ist, kommt es demnac ... mehr

  • q&more Artikel

    Goldplasma macht unsichtbare Strukturen sichtbar

    Die Mikro-Computertomographie (μCT) ist in den letzten Jahren zu einer Standardmethode in vielen medizinischen, wissenschaftlichen und industriellen Bereichen geworden. Das bildgebende Verfahren ermöglicht die zerstörungsfreie, dreidimensionale Abbildung verschiedenster Strukturen. mehr

  • Autoren

    Dr. Markus Lambertz

    Markus Lambertz, Jahrgang 1984, studierte Biologie mit den Schwerpunkten Zoologie, Paläontologie und Geologie in Bonn (Diplom 2010). Nach einem mehrmonatigen Forschungsaufenthalt in Ribeirão Preto (Brasilien) nahm er sein Promotionsstudium in Bonn auf (Promotion 2015). Im Anschluss war er a ... mehr

    Prof. Dr. Jürgen Bajorath

    Jürgen Bajorath hat Biochemie studiert und an der Freien Universität Berlin promoviert. Nach seinem Postdoc-Aufenthalt bei Biosym Technologies in San Diego war er für mehr als 10 Jahre in der US-amerikanischen Pharmaforschung tätig und hatte ebenfalls akademische Posi­tionen, zuletzt war er ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.