12.01.2017 - Friedrich-Alexander-Universität Erlangen-Nürnberg

Hoch effektive Medikamente und Pflanzenschutzmittel ohne unerwünschte Nebenwirkungen

Chemiker entwickeln neues Verfahren um chirale Moleküle zuverlässig zu trennen

Chemiker der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) arbeiten an einem Verfahren, mit dem sogenannte chirale Moleküle zuverlässig getrennt werden können. Damit soll es künftig einfacher sein, hoch effektive Medikamente und Pflanzenschutzmittel ohne unerwünschte Nebenwirkungen herzustellen. Am Verbundprojekt CORE, für das die Europäische Union rund vier Millionen Euro bereitstellt, sind Forscher aus Großbritannien, Frankreich, den Niederlanden, der Schweiz und Deutschland beteiligt.

Moleküle als Spiegelbilder

In der organischen Chemie treten Moleküle häufig chiral auf. Das bedeutet, sie kommen in zwei spiegelbildlichen Formen vor – ähnlich wie die linke und die rechte Hand des Menschen. Nukleinsäuren und Enzyme zum Beispiel sind chiral, aber auch die Rezeptoren auf Zelloberflächen. Deshalb sind Arzneimittel, Insektizide und Duftstoffe, die über Rezeptoren oder Enzyme wirken, meistens auch chiral. Obwohl die R- und S-Enantiomere – so heißen die paarweise auftretenden Moleküle – sich nur durch ihre räumliche Anordnung unterscheiden, haben sie oftmals unterschiedliche medizinische Wirkungen: Das S-Molekül des Schmerzmittels Ketamin beispielsweise besitzt eine dreifach höhere Potenz als die R-Form. Das wohl bekannteste Beispiel für die Bedeutung der Enantiomere ist der Contergan-Skandal der 1960er Jahre: Während das R-Thalidomid als Schlafmittel wirkt, ist die S-Form keimschädigend und wird für Missbildungen bei Neugeborenen verantwortlich gemacht.

Enantiomere sind schwer zu trennen

„Wir wissen inzwischen viel über die Bedeutung chiraler Moleküle“, sagt Prof. Dr. Svetlana Tsogoeva vom Lehrstuhl für Organische Chemie I der FAU. „Dennoch sind die Verfahren zur Trennung der Enantiomere bis heute aufwändig und teuer.“ Weil die fraktionierte Kristallisation als klassisches Trennverfahren bei chiralen Molekülen nur bedingt funktioniert, wird bevorzugt die asymmetrische Katalyse angewandt. Doch das hat einige Nachteile: Die Katalysatoren müssen für jeden Wirkstoff gezielt entwickelt werden – ein enormer Zeit-, Energie- und Kostenfaktor. Sie sind häufig metallhaltig oder durch andere Stoffe toxisch und können die Medikamente kontaminieren. Und sie stoßen in ihrer Wirkung an Grenzen und produzieren oftmals nur ein Gemisch von linker und rechter Form eines Moleküls. Tsogoeva: „Wir brauchen ein Verfahren, mit dem wir die Enantiomere zuverlässig trennen können und das für ein möglichst breites Spektrum chiraler Wirkstoffe und Materialien geeignet ist.“

Der Ansatz: Autokatalytische Prozesse

Genau daran arbeitet die Forschergruppe der FAU im Rahmen des Verbundprojektes CORE. „Wir wollen die chemische Synthese mit der physikalischen autokatalytischen Kristallisation kombinieren, um so die gewünschten Enantiomere in reiner Form zu erhalten“, erklärt Svetlana Tsogoeva. „Dieser Ansatz erlaubt es, auf komplexe chirale Katalysatoren zu verzichten und stattdessen preiswerte achirale organische Katalysatoren einzusetzen.“ Bereits 2009 ist es Chemikern der FAU unter Leitung von Prof. Tsogoeva gelungen, mit der Methode der autokatalytischen Kristallisation enantiomerenreine Aminosäure-Derivate herzustellen. Im Rahmen von CORE sollen diese Prozesse nun verfeinert und breiter anwendbar gemacht werden. Ziel ist es, neue pharmazeutische Stoffe zu entwickeln, die über bessere Eigenschaften verfügen und bei denen schädliche Nebenwirkungen vermieden werden können.

CORE: Forscher und Unternehmen arbeiten zusammen

Im Forschungsverbundprojekt CORE (Continuous Resolution and Deracemization of Chiral Compounds by Crystallization) arbeiten Forscher aus Großbritannien, Deutschland, den Niederlanden, Frankreich und der Schweiz mit global agierenden Unternehmen zusammen. CORE bündelt Expertisen aus unterschiedlichen Bereichen der synthetischen organischen Chemie, der Pharmazie, der Verfahrenstechnik und der Festkörperchemie. Für das auf vier Jahre angelegte Projekt stellt die Europäische Union im Rahmen der Horizont-2020-Initiative rund vier Millionen Euro zur Verfügung.

Fakten, Hintergründe, Dossiers

Mehr über Friedrich-Alexander-Universität Erlangen-Nürnberg

  • News

    Nano-Rost: Smartes Additiv zur Temperaturüberwachung

    Die richtige Temperatur ist entscheidend – ob bei technischen Prozessen, für die Qualität von Lebensmitteln und Medikamenten oder für die Lebenszeit von Elektronikbauteilen und Batterien. Hierzu erfassen Temperaturindikatoren (un)erwünschte Temperaturerhöhungen, die später ausgelesen werden ... mehr

    Was haben Kaffee, Rotwein und Tinte gemein?

    Wer schon mal eine Tasse Kaffee umgestoßen hat weiß, dass Kaffee in einem außergewöhnlichen Muster trocknet: Der Fleck ist in der Mitte heller, wird nach außen hin aber von einem dunkleren Rand umschlossen – einem sogenannten Kaffeering. Ein Forschungsteam um Prof. Dr. Nicolas Vogel, der an ... mehr

    Per Kapsel durch die Blutbahn

    Bakterien im Darm verpacken verschiedenste ihrer Biomoleküle in kleine Kapseln. Diese werden vom Blutkreislauf in verschiedene Organe des Körpers transportiert und sogar von Nervenzellen des Gehirns aufgenommen und verarbeitet. Dies hat jetzt erstmals ein Team von Forscherinnen und Forscher ... mehr

  • q&more Artikel

    Aromastoffübergang in Muttermilch

    „Der Mensch ist, was er isst.“ Das Zitat des deutschen Philosophen Ludwig Feuerbach (1804–1872) lässt sich auch auf die Ernährung unseres Nachwuchses übertragen: Die Ernährungsgewohnheiten der Mutter spiegeln sich im Aromaprofil der Muttermilch wieder [1, 2] und können dadurch ... mehr

    Bunte Fehlgerüche in Künstlerfarben

    Farben auf Acrylbasis gehören zu den am häufigsten verwendeten Farben. Obwohl die Farben auf Wasserbasis hergestellt werden können und dabei geringe Anteile an flüchtigen Substanzen in der Produktion zum Einsatz kommen, weisen Acrylfarben dennoch häufig einen starken Eigengeruch auf. Bislan ... mehr

    Modellierte Medikamente

    Computergestütztes Medikamentendesign (CADD) ist nichts Neues. Das Journal of ­Computer-Aided Molecular Design (Springer) wurde 1987 gegründet, als die 500 weltweit schnellsten Computer langsamer als ein heutiges Smartphone waren. Damit ist dieses Feld ein Vierteljahrhundert alt. mehr

  • Autoren

    Dr. Helene M. Loos

    Helene Loos studierte Lebensmitteltechnologie an der Universität Hohenheim und promovierte 2015 im Fach Lebensmittelchemie an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU). Während ihrer Promotion untersuchte sie bei Prof. Dr. Andrea Büttner und Dr. Benoist Schaal am Fraunhofe ... mehr

    Diana Owsienko

    Diana Owsienko, Jahrgang 1994, studierte von 2013 bis 2017 Lebensmittelchemie an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) und absolvierte von 2017 bis 2018 ihre wissenschaftliche Abschlussarbeit am Fraunhofer-Institut für Verfahrenstechnik und Verpackung (IVV) in Freising ... mehr

    Nadine I. Goldenstein

    Nadine Goldenstein studierte Meeresumweltwissenschaften an der Universität Bremen. Im Anschluss arbeitete sie als Wissenschaftlerin im Bereich der organischen Biogeochemie am MARUM, Bremen, wo sie sich intensiv mit der Erforschung mikrobieller Stoffwechselprozesse, mit Fokus auf den globale ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: