q&more
Meine Merkliste
my.chemie.de  
Login  

News

Ein "Schalter" zur Erhöhung der Stärkeakkumulation in Algen

Eine bessere Zukunft für erneuerbare Energien und Materialien

Tokyo Tech

Kultivierung der einzelligen Rotalge C. merolae im Laboratorium

Tokyo Tech

Darstellung des "Schalters" zur Steuerung der Stärkeakkumulation

05.11.2018: Die Ergebnisse einer gemeinsamen Studie von Tokyo Tech und der Tohoku University, Japan, eröffnen Perspektiven für die großtechnische Produktion von Stärke aus Algen, einer wertvollen Bioressource für Biokraftstoffe und andere erneuerbare Materialien. Solche biobasierten Produkte haben das Potenzial, fossile Brennstoffe zu ersetzen und zur Entwicklung nachhaltiger Systeme und Gesellschaften beizutragen.

Ein "Schalter" zur Kontrolle des Stärkegehalts in Algen wurde von einem Forschungsteam unter der Leitung von Sousuke Imamura am Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Tech, entdeckt.

Im Mittelpunkt der Studie stand die einzellige Rotalge Cyanidioschyzon merolae. Die Forscher zeigten, dass der Stärkegehalt in C. merolae durch Inaktivierung von TOR (Ziel von Rapamycin), einer Proteinkinase, die bekanntlich eine wichtige Rolle beim Zellwachstum spielt, drastisch erhöht werden konnte.

Sie beobachteten einen deutlichen Anstieg des Stärkegehalts 12 Stunden nach Inaktivierung von TOR durch Exposition gegenüber Rapamycin, was zu einem bemerkenswerten zehnfachen Anstieg nach 48 Stunden führte.

Wichtig ist, dass die Studie einen Mechanismus beschreibt, der diesem starken Anstieg des Stärkegehalts zugrunde liegt. Mit einem Verfahren namens Flüssigchromatographie-Tandem-Massenspektrometrie (LC-MS/MS) untersuchten die Forscher subtile Veränderungen in der Struktur von mehr als 50 Proteinen, die am "Einschalten" des Prozesses der Stärkeakkumulation beteiligt sein könnten. Infolgedessen haben sie GLG1 als ein Schlüsselprotein von Interesse identifiziert. GLG1 wirkt ähnlich wie Glycogenin, ein Enzym, das in Hefe- und Tierzellen vorkommt und bekanntlich an der Initiierung der Stärke- (oder Glycogensynthese) beteiligt ist.

Der Mechanismus wird für eine Vielzahl von Industrien von großem Interesse sein, die bestrebt sind, die Produktion von Biokraftstoffen und Biochemikalien mit Mehrwert zu steigern.

So könnten die Ergebnisse beispielsweise die Produktion von umweltfreundlichen Kraftstoffadditiven, Pharmazeutika, Kosmetika und Biokunststoffen beschleunigen, die heute mit dem Ausstieg aus Einweg-Plastiktüten und -Strohhalmen in vielen Teilen der Welt stark nachgefragt sind.

Algen sind im Vergleich zu Landpflanzen aufgrund ihrer hohen photosynthetischen Produktivität und der relativ einfachen Kultivierbarkeit sehr attraktiv. Stärke, Triacylglycerine (TAGs) und andere Bestandteile der Algenbiomasse werden zunehmend als vielversprechende und wirkungsvolle Möglichkeit angesehen, einen Beitrag zu den von den Vereinten Nationen festgelegten Zielen der nachhaltigen Entwicklung (SDGs) zu leisten.

Das Forschungsteam stellt fest, dass weitere Studien mit anderen Algenarten sowie höheren Pflanzen wie Arabidopsis thaliana weitere Informationen über die grundlegenden molekularen Mechanismen der Stärkeakkumulation liefern könnten. "Diese Informationen werden dazu beitragen, Technologien zur Verbesserung der Produktivität der Stärkebiosynthese und damit zur nachhaltigen Produktion von Biomasse und Bioenergie zu entwickeln", sagt Imamura.

Originalveröffentlichung:
Imran Pancha, Hiroki Shima, Nahoko Higashitani, Kazuhiko Igarashi, Atsushi Higashitani, Kan Tanaka, Sousuke Imamura; "Target of rapamycin (TOR) signaling modulates starch accumulation via glycogenin phosphorylation status in the unicellular red alga Cyanidioschyzon merolae"; Plant Journal; 2018

Fakten, Hintergründe, Dossiers

  • Medikamente
  • Glykogen
  • Polysaccharide
  • Biochemikalien

Mehr über Tokyo Institute of Technology

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:



Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.