q&more
Meine Merkliste
my.chemie.de  
Login  

News

Erbgut im Angebot: Informatiker entwickeln Schutz für Genomdaten

Technische Universität Darmstadt/Katrin Binner

Prof. Dr. Stefan Katzenbeisser, Profilbereich Cybersecurity der TU Darmstadt, arbeitet an sicherer Verschlüsselung für Genomdaten

16.12.2016: Je besser Genomdaten erforscht sind, desto gezielter können Ärzte ihre Patienten künftig behandeln. Doch wie lassen sich diese hochsensiblen Daten vor Missbrauch schützen? Informatiker der Technischen Universität Darmstadt möchten sie so geschickt verschlüsseln, dass man dennoch mathematische Analysen mit ihnen durchführen kann.

Genomdaten sind unsere biologische Identität. Aus geerbten genetischen Varianten - den sogenannten SNPs (Single Nucleotide Polymorphisms) - lässt sich zum Beispiel herauslesen, ob wir ein erhöhtes Risiko aufweisen, an Krebs, Huntington Disease oder Parkinson zu erkranken. Für Lebensversicherungen oder Arbeitgeber ist dieses Wissen Gold wert. Forscher fürchten deshalb zu Recht, dass Genomdaten bereits im Internet gehandelt werden - ohne unser Wissen und Einverständnis.

Dennoch ist es keine gute Idee, die Nutzung der Daten generell zu verbieten. Sie sind Grundlage für eine personalisierte Medizin, mit der Ärzte künftig eine auf Patienten zugeschnittene Therapie anbieten können. Die Genomdaten liefern womöglich Hinweise darauf, ob jemand ein Medikament besonders gut vertragen wird oder ob eine bestimmte Therapie anschlagen wird.

Stefan Katzenbeisser und Kay Hamacher vom Profilbereich Cybersecurity (CYSEC) der TU Darmstadt möchten einerseits Genomdaten nutzbar machen und sie andererseits vor Missbrauch schützen. Ein Risiko besteht zum Beispiel immer dann, wenn Ärzte und Kliniken die Daten für die Forschung frei geben. Die Genomforschung ist auf leistungsstarke Rechner angewiesen, daher müssen IT-Dienstleister involviert werden, die mit Super-Computern die Daten durchforsten. "Wir benötigen also ein Verfahren, bei dem die Daten zwar verschlüsselt werden, bei dem aber dennoch nachträgliche Berechnungen möglich sind", sagt Katzenbeisser. "Der Dienstleister, der die Berechnung durchführt, darf keine Gelegenheit haben, die unverschlüsselten Daten einzusehen." Das Verfahren nennt sich homomorphe Verschlüsselung. Ein vereinfachtes Beispiel zeigt, wie es funktioniert: Zwei Zahlen werden als verschlüsselte Werte A und B an einen Dienstleister geschickt. Der Dienstleister multipliziert A und B und schickt das Ergebnis C zurück. Dabei kennt er weder A noch B noch C. Der Auftraggeber hingegen kann C wieder entschlüsseln und das Ergebnis im Klartext auslesen. Auf ähnliche Weise lassen sich auch komplexe Berechnungen durchführen.

Weil Genomdaten zudem aus großen Datensätzen bestehen, konzentrieren sich Forscher bei ihren Analysen meist auf die SNPs oder Mutationen der DNA. Das führt zu einem weiteren Sicherheitsrisiko: Der IT-Dienstleister könnte aus dem Zugriff auf die Sequenz schließen, woran die Forscher arbeiten. "Der DNA-String, den ich untersuche, gibt viel Preis darüber, mit welchen Krankheiten oder Wirkstoffen ich mich beschäftige", sagt Katzenbeisser. "Um dies zu verhindern, führen wir ein Täuschungsmanöver ein, das sogenannte Oblivious RAM. Dabei wird der physische Speicher bei der Datenbankabfrage ständig durcheinander gemischt. Niemand kann dann nachvollziehen, ob der Fragesteller mehrmals auf die gleichen Daten oder auf unterschiedliche Daten zugegriffen hat. Die Intention der Abfrage ist verschleiert."

Die Teams von Katzenbeisser und Hamacher möchten zunächst die Basistechniken für die kryptischen Verfahren entwerfen und dann Tools, mit denen sich die Verfahren fehlerfrei umsetzen lassen. Die Forschungen sind Teil des von der Deutschen Forschungsgemeinschaft finanzierten Sonderforschungsbereichs CROSSING und des vom Bundesforschungsministerium geförderten Schwerpunkts CRISP.

Fakten, Hintergründe, Dossiers

  • Genomforschung
  • Informatik
  • TU Darmstadt

Mehr über TU Darmstadt

  • News

    Neues DNA-Syntheseverfahren imitiert die Natur

    Zwei Biologie-Studenten der TU Darmstadt haben gemeinsam mit einem internationalen Forscherteam des Lawrence Berkeley National Laboratorys ein innovatives Verfahren zur enzymatischen Synthese neuer DNA-Sequenzen entwickelt. Damit setzten sie eine seit Jahrzehnten diskutierte Idee erstmals i ... mehr

    Schalter aus der Druckmaschine

    Die leuchtenden Schalter an den Türen von Bussen sind nachts insbesondere für ältere Fahrgäste nicht immer leicht zu erkennen. An der TU Darmstadt wird in Kooperation mit einem Bus-Hersteller ein innovatives Druckverfahren für hell strahlende, aber blendfreie Schalter entwickelt. An einer B ... mehr

    Brandsicher und nachhaltig

    Der Brand im Londoner Grenfell-Tower hat es noch einmal in den Fokus gerückt: Die Anforderungen an moderne Dämmmaterialien sind hoch. Neben ihrer geringen Wärmeleitfähigkeit sollen sie brandsicher, wirtschaftlich und nachhaltig sein. An einem Dämmstoff, der all das kann, forschen Wissenscha ... mehr

  • q&more Artikel

    Einsichten

    Eigentlich ist die Brennstoffzellentechnik schon „ein alter Hut“. Die erste Brennstoffzelle wurde von Sir William Grove 1839 entwickelt, der erste Brennstoffzellenstapel bereits 1842 der Öffentlichkeit präsentiert. Trotzdem verstaubte das innovative elektrochemische Konzept vorerst in der S ... mehr

    Makromolekulare Schlingpflanzen

    Eine Kurve, die sich mit konstanter Steigung um den Mantel eines Zylinders windet, wird als ­(zylindrische) Helix bezeichnet. Ihre Bildung kann man sich als eine Überlagerung einer Trans­lations- mit einer Rotations­bewegung vorstellen, wobei bei gleich bleibendem Rotationssinn ein Wechsel ... mehr

    Kohlenstoff in 1-D, 2-D und 3-D

    Das Element Kohlenstoff sorgt wie kein anderes ­Element des Periodensystems der Elemente seit­ ­nunmehr als 25 Jahren in regelmäßigen Abständen für intensive Forschungsaktivitäten. War es Mitte der 80er-Jahre die Entdeckung der gezielten Synthese der sphärischen Allotrope des Kohlenstoffs, ... mehr

  • Autoren

    Prof. Dr. Katja Schmitz

    Katja Schmitz, geb. 1978, studierte Chemie in Bonn und Oxford und fertigte nach dem Diplom­abschluss 2002 ihre Promotion über Peptide, Peptoide und Oligoamine als molekulare Transporter in der Arbeitsgruppe von Ute Schepers im Arbeitskreis von Konrad Sandhoff an der Universität Bonn an. 200 ... mehr

    Constantin Voss

    Constantin Voss, geb. 1985, studierte Chemie an der Technischen Universität Darmstadt mit dem Abschluss Diplom-Ingenieur. Seine Diplomarbeit mit dem Titel „Synthese von funktionali­sierten Distyrylpyridazinen für die Fluoreszenz­diagnostik“ fertigte er 2011 im Arbeitskreis Prof. Boris Schmi ... mehr

    Prof. Dr. Boris Schmidt

    Boris Schmidt, geb. 1962, studierte Chemie an der Universität Hannover und am Imperial College in London. Nach seiner Promotion 1991 an der Universität Hannover lehrte er bis 1994 am Uppsala Biomedical Centre und forschte zwischenzeitlich als DFG-Stipendiat im Rahmen eines Post-Doc-Aufentha ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.