q&more
Meine Merkliste
my.chemie.de  
Login  

News

Durchbruch: Blitzschnelles Zeitlupen-Mikroskop verfolgt die Bewegung eines einzelnen Moleküls

Dominik Peller

Einzelne Pentacen Moleküle vibrieren auf einer Goldoberfläche.

11.11.2016: Einer Forschergruppe der Universität Regensburg ist es mit Hilfe eines neu entwickelten, ultraschnellen Rastertunnelmikroskops zum ersten Mal gelungen, bewegte Bilder von einzelnen Molekülen aufzuzeichnen.

Die uns umgebende gasförmige, flüssige und feste Materie besteht aus Atomen und Molekülen. Diese elementaren Bausteine sind so winzig, dass man eine eigene Längeneinheit eingeführt hat, um ihre typische Größe zu beschreiben: 1 Ångström = 0,0000000001 Meter. Im alltäglichen Leben können wir Atome und Moleküle nicht einzeln beobachten, da sie selbst für die besten Lichtmikroskope tausendfach zu klein sind. Seit einigen Jahren lassen sich scheinbar ruhende Moleküle aber mithilfe ausgeklügelter nicht-optischer Mikroskope, etwa mit sogenannten Rastertunnelmikroskopen, direkt abbilden.

Atome und Moleküle sind jedoch auch in augenscheinlich regloser Materie in ständiger Bewegung. Auf der unglaublich kurzen Zeitskala von Femtosekunden flitzen, rotieren und vibrieren sie rasant durch ihre atomare Umgebung. Eine Femtosekunde ist dabei der millionste Teil einer Milliardstel Sekunde, also 0,000000000000001 Sekunde. Die Dynamik von Atomen und Molekülen ist maßgeblich dafür verantwortlich, wie sich Materie makroskopisch verhält; sie bestimmt chemische Reaktionen, biomolekulare Vorgänge in Lebewesen und wichtige Prozesse in der modernen Nanoelektronik. Ein Traum vieler Physiker, Chemiker, Biologen, Mediziner und Materialwissenschaftler war es daher seit Langem, die Bewegung einzelner Moleküle direkt zu sehen. Hierfür wäre ein Mikroskop nötig, das viele Milliarden mal schneller als die schnellsten elektronischen Kameras ist – eine Vorstellung, die bisher als Utopie galt.

Einer internationalen Forschergruppe an der Universität Regensburg ist dieser Durchbruch nun gelungen. Das Team um Prof. Rupert Huber und Prof. Jascha Repp, beide vom Institut für Experimentelle und Angewandte Physik der Universität Regensburg, hatte es sich zum Ziel gesetzt, erstmals bewegte Bilder von einzelnen Molekülen aufzuzeichnen. Dafür haben die Regensburger Physiker ein einzigartiges ultraschnelles Rastertunnelmikroskop entwickelt. Das Prinzip der Rastertunnelmikroskopie ähnelt dem eines Plattenspielers: Eine spitze Nadel wird über eine Oberfläche bewegt, um deren Relief abzutasten. Diese Nadel ist so scharf, dass ihre Spitze aus nur einem einzigen Atom besteht. Außerdem berührt sie die Oberfläche nicht, sondern schwebt wenige Atomabstände darüber. Ein quantenmechanischer Effekt, der sich „Tunneln“ nennt, ermöglicht es dabei, dass die Spitze als winzige, berührungslose Sonde verwendet werden kann, um Strukturen kleiner als ein einzelnes Molekül zu ertasten.

Das Zeitfenster, in dem das Tunneln geschieht, sollte dabei – ähnlich der Belichtungszeit einer Fotokamera – möglichst kurz sein, um hohe Zeitauflösung zu erreichen. Im Prinzip lässt sich dieses Zeitfenster einschränken, indem man die elektrische Vorspannung zwischen Spitze und Oberfläche nur ganz kurz anlegt. Um ganz besonders schnell zu sein, entwickelten die Forscher einen raffinierten Trick: Sie benutzten das elektrische Trägerfeld eines ultrakurzen Lichtblitzes als Vorspannung. Innerhalb einer Zeitspanne, die kürzer ist als eine Halbschwingung von Licht, konnten sie so einzelne Elektronen vom Molekül auf die Spitze tunneln lassen. Damit wurde es möglich, zum ersten Mal einen Femtosekunden-Schnappschuss eines einzelnen Moleküls direkt in Raum und Zeit anzufertigen. Darüber hinaus konnten die Forscher im ersten Femtosekunden-Zeitlupenfilm eines einzelnen Moleküls verfolgen, wie ein Pentacen-Molekül auf der Oberfläche schwingt – mit einer Periode schneller als ein Billionstel einer Sekunde und einer Amplitude von wenigen Hundertstel eines Ångström!

Auf den nun zugänglichen Längen- und Zeitskalen wird die Natur unmittelbar und augenfällig von den verblüffenden Gesetzen der Quantenmechanik dominiert. Die neue Möglichkeit, Bewegungen von quantenmechanischen Materiewellen direkt in Ort und Zeit zu sehen und zu kontrollieren, dürfte einen Paradigmenwechsel in der Erforschung des Nanokosmos auslösen und künftige Technologien etwa superschneller Lichtwellen-getriebener Nanoelektronik inspirieren.

Fakten, Hintergründe, Dossiers

Mehr über Uni Regensburg

  • News

    Der direkte Weg zur Phosphorverbindung

    Wissenschaftler finden effizientere und umweltfreundlichere Methode, um Produkte ohne Zwischenstufen aus weißem Phosphor herzustellen. Pflanzenschutzmittel, Dünger, Extraktions- oder Schmiermittel – Phosphorverbindungen sind aus vielen Mitteln für den Alltag und die Industrie nicht wegzuden ... mehr

    Anfängliche Abstoßung schließt spätere Anziehung nicht aus

    Der Philosoph Arthur Schopenhauer hat mit seiner Stachelschwein-Allegorie ein Gleichnis entwickelt, welches einen gewissen Wohlfühlabstand zwischen Menschen erklärt. Demnach fühlen sich Menschen bei zu großem Abstand allein und bei zu kleinem Abstand unwohl aufgrund abstoßender Charaktereig ... mehr

    Chemiker verwenden Photokatalysator aus Harnstoff

    Photosynthese oder “Chemie mit Licht“ – was uns die Natur und Pflanzen vormachen, hat die moderne Synthesechemie in den letzten Jahren „wiederentdeckt“ und zu einem sehr wertvollen Werkzeug der industriellen und universitären Erzeugung von Stoffen weiterentwickelt. Dabei geht es nicht nur u ... mehr

  • q&more Artikel

    Mizellen als Reaktionsumgebung

    Die Photoredoxkatalyse hat sich zu einem leistungsfähigen Instrument für die Synthese organischer Verbindungen mit den verschiedensten Strukturen entwickelt. Die hohe Stabilität der Kohlenstoff-Chlor-Bindungen hat jedoch lange Zeit den Einsatz kostengünstiger und leicht verfügbarer Chloralk ... mehr

    Interessante Gesundheitsförderer

    Unter den pflanzlichen Sekundärstoffen ist kaum eine Klasse von Verbindungen so pro­minent in unserem Leben vertreten wie die Flavonoide. Man findet sie in verschiedenen Oxidationsstufen und hauptsächlich als Glykoside (Abb. 1) in zahlreichen Nahrungsmitteln. Mit dem Konsum von Obst, Gemüse ... mehr

  • Autoren

    Prof. Dr. Burkhard König

    Burkhard König, Jahrgang 1963, studierte Chemie an der Universität Hamburg, wo er 1991 promovierte. Er absolvierte Postdoc-Aufenthalte bei Prof. M. A. Bennett, Research School of Chemistry, Australian National University, Canberra, Australien und bei Prof. B. M. Trost, Stanford University, ... mehr

    Dr. Maciej Giedyk

    Maciej Giedyk, Jahrgang 1988, beendete 2012 sein Studium der Chemie an der Warschauer Technischen Universität mit einem Master of Engineering ab. Im Jahr 2016 schloss er seine Doktorarbeit am Institut für Organische Chemie der Polnischen Akademie der Wissenschaften unter der Leitung von Pro ... mehr

    Prof. Dr. Jörg Heilmann

    Jörg Heilmann, geb. 1966, studierte Pharmazie an der Heinrich-Heine-Universität Düsseldorf und erhielt 1991 die Appro­bation. Von 1991 – 1992 war er als Apotheker in der Löwen-Apotheke Mülheim an der Ruhr tätig. An seine Promotion 1997 am Lehrstuhl Pharmazeutische Biologie an der Heinrich-H ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.