q&more
Meine Merkliste
my.chemie.de  
Login  

News

„Molekül-Selfie“ enthüllt den Aufbruch einer chemischen Bindung

Grafik: ICFO/Scixel

Schematische Darstellung des Aufbruchs einer molekularen Bindung in Acetylen (C2H2).

24.10.2016: Wissenschaftlern des Institute of Photonic Sciences (Barcelona) ist es gelungen, die Position aller Atome eines Moleküls zu verfolgen während der Aufbruch einer der chemischen Bindungen ein einzelnes Proton freisetzt. Hierzu wurde ein am Heidelberger Max-Planck-Institut für Kernphysik entwickeltes Reaktionsmikroskop verwendet.

Man stelle sich vor, die einzelnen Atome eines Moleküls ließen sich während einer chemischen Reaktion beobachten: Wie sie sich umlagern, um eine neue Substanz zu bilden oder wie Bausteine der DNS sich bewegen und vervielfältigt werden. Diese Fähigkeit würde bisher unerreichte Einsichten bieten, um diese Prozesse besser zu verstehen und möglicherweise zu kontrollieren.

Die simple Idee, den Aufbruch oder die Umwandlung von Molekülen während einer chemischen Reaktion zu beobachten, war bisher unerreichbar, denn sie setzt voraus, alle Atome, die das Molekül bilden, zu verfolgen – und dies mit subatomarer räumlicher Auflösung innerhalb weniger Femtosekunden. Daher klangen derartige „Schnappschüsse“ einer molekularen Reaktion mit der erforderlichen Präzision wie Science Fiction. Vor nunmehr genau 20 Jahren wurde die Idee geboren, die Elektronen des Moleküls selbst zu nutzen, um seine Struktur abzubilden: Man bringe dem Molekül bei – wie wir heute sagen würden – ein „Selfie“ von sich zu machen!

In einer jetzt bei Science publizierten Studie konnten Wissenschaftler des Institute of Photonic Sciences (ICFO) in Barcelona und des Heidelberger Max-Planck-Instituts für Kernphysik (MPIK) sowie weiterer Institutionen aus Deutschland, den Niederlanden; Dänemark und den USA einen entscheidenden Durchbruch vermelden. Dem Team gelang die Abbildung des Aufbruchs einer chemischen Bindung in Acetylen (C2H2) innerhalb von 9 Femtosekunden nachdem das Molekül ionisiert wurde. Die Forscher verfolgten sämtliche Atome in einem einzelnen Acetylen-Molekül mit einer räumlichen Präzision von nur 0,05 Ångström (deutlich weniger als ein Atomdurchmesser) mit einer zeitlichen Präzision von 0,6 Femtosekunden. Dabei konnten sie den Aufbruch einer bestimmten einzelnen Bindung des Moleküls auslösen und beobachten, wie ein Proton das Molekül verlässt. Nachdem gezeigt wurde, dass die die erforderliche räumliche und zeitliche Auflösung erreicht wurde, um Schnappschüsse der molekularen Dynamik zu erhalten, möchte die Gruppe um Jens Biegert am ICFO diese als nächstes auf andere Moleküle wie Katalysatoren oder biologisch relevante Systeme anwenden.

Das Team in Barcelona entwickelte eine weltweit führende ultraschnelle Laserquelle für den mittleren Infrarot-Bereich und kombinierte diese mit einem Reaktionsmikroskop. Dieses erlaubt eine kinematisch vollständige Erfassung der dreidimensionalen Impulsverteilung der freigesetzten Elektronen und Ionen in Koinzidenz, d. h. es werden alle geladenen Bruchstücke des Moleküls gleichzeitig nachgewiesen und der Reaktion zugeordnet. Entwickelt und gebaut wurde das Reaktionsmikroskop am MPIK in der Gruppe um Robert Moshammer in der Abteilung von Thomas Pfeifer. Hier wurde diese Art der Impulsspektroskopie, die auf Joachim Ullrich (vormals MPIK, seit 2012 Präsident der Physikalisch Technische Bundesanstalt) zurückgeht, seit Jahren erfolgreich zur Untersuchung zeitaufgelöster Moleküldynamik in starken Laserfeldern eingesetzt. Im Experiment am ICFO wird zunächst ein einzelnes Acetylen-Molekül mit einem kurzen Laserpuls räumlich ausgerichtet und dann mit einem zweiten ausreichend starken Laserpuls ionisiert. Das freigesetzte Elektron wird vom Laserfeld wieder zum Ursprungs-Molekül zurückgetrieben, wobei es an diesem streut – alles innerhalb von 9 Femtosekunden. Aufgrund seiner quantenmechanischen Welleneigenschaft bildet das Elektron bei diesem Streuprozess das gesamte Molekül ab und erlaubt so eine Rekonstruktion von dessen Struktur.

Mittels einer geschickten Analyse der Daten konnten die Physiker ferner zeigen, dass die Orientierung des Moleküls relativ zur Richtung des elektrischen Feldes des Lasers ganz grundlegend die Dynamik der Reaktion ändert. Bei paralleler Ausrichtung wurde eine Vibration des Moleküls entlang der Feldrichtung beobachtet während bei senkrechter Ausrichtung eine der C–H-Bindungen aufbrach. In dem Experiment wurde der Aufbruch der Bindung erstmals visualisiert und beobachtet, wie das Protons das Acetylen-Ion verlässt.

Originalveröffentlichung:
B. Wolter et al.; "Ultrafast electron diffraction imaging of bond breaking in di-ionized acetylene"; Science; 354, 308 (2016)

Fakten, Hintergründe, Dossiers

  • Atome
  • Moleküle
  • Reaktionsmikroskope
  • Protonen
  • chemische Reaktionen
  • Institute of Photon…

Mehr über ICFO – The Institute of Photonic Sciences

  • News

    Graphen gibt zukünftigen Terahertz-Kameras einen enormen Schub

    Die Erkennung von Terahertz-Licht (THz) ist aus zwei Hauptgründen äußerst nützlich: Erstens wird die THz-Technologie zu einem Schlüsselelement in Anwendungen in den Bereichen Sicherheit (z.B. Flughafen-Scanner), drahtlose Datenkommunikation und Qualitätskontrolle, um nur einige zu nennen. A ... mehr

Mehr über MPI für Kernphysik

  • News

    Scharfe Röntgenblitze aus dem Atomkern

    Röntgenlicht macht das Unsichtbare sichtbar: Sie erlauben die atomgenaue Aufklärung, wie Materialien aufgebaut sind, in den 1950er-Jahren enthüllten sie etwa die der Doppelhelix-Struktur des Erbgutmoleküls DNS. Mit neuen Röntgenquellen wie dem Freie-Elektronen-Laser XFEL in Hamburg lassen s ... mehr

    Gesteuerte Choreografie eines Elektronenpaars könnte die Chemie revolutionieren

    Physiker verfeinern zusehends ihre Kontrolle über die Materie. Ein deutsch-spanisches Team um Forscher des Max-Planck-Instituts für Kernphysik in Heidelberg hat nun erstmals die Bewegung der beiden Elektronen eines Heliumatoms abgebildet und den elektronischen Paartanz sogar gesteuert. Gelu ... mehr

    Eine Bremse für kreiselnde Moleküle

    Chemische Reaktionen aus dem Weltall lassen sich künftig leichter auch auf der Erde untersuchen. Ein internationales Team, an dem Forscher der dänischen Universität Aarhus und des Max-Planck-Institut für Kernphysik in Heidelberg, hat einen effizienten und vielseitigen Weg gefunden, die Rota ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.