q&more
Meine Merkliste
my.chemie.de  
Login  

News

Attosekundenkamera für Nanostrukturen

Christian Hackenberger

Trifft Laserlicht auf eine Nanonadel (gelb), entstehen an der Oberfläche elektromagnetische Nahfelder. Ein zweiter Laserpuls löst aus der Nadel ein Elektron (grün). Dies erlaubt es, die Charakteristik der Nahfelder zu bestimmen.

02.06.2016: Physiker des Labors für Attosekundenphysik am Max-Planck-Institut für Quantenoptik und der Ludwig-Maximilians-Universität haben in Zusammenarbeit mit Wissenschaftlern der Friedrich-Alexander-Universität Erlangen-Nürnberg ein Licht-Materie-Phänomen in der Nanooptik beobachtet, das nur Attosekunden dauert.

Die Wechselwirkung zwischen Licht und Materie ist von besonderer Bedeutung in der Natur, insbesondere in der Photosynthese. Licht-Materie Wechselwirkungen werden auch technisch angewendet und sind für die Elektronik der Zukunft wichtig. Denn eine Technologie, die auf Lichtwellen kodierte Daten überträgt oder speichert, wäre fast 100.000 Mal schneller als heutige Systeme. Eine Licht-Materie-Wechselwirkung, die den Weg ebnen könnte zu einer von Lichtwellen gesteuerten Elektronik, haben nun Wissenschaftler des Labors für Attosekundenphysik (LAP) der Ludwig-Maximilians-Universität (LMU) und des Max-Planck-Instituts für Quantenoptik (MPQ) in Zusammenarbeit mit Kollegen vom Lehrstuhl für Laserphysik der Friedrich-Alexander-Universität Erlangen-Nürnberg untersucht. Die Forscher schickten starke Laserpulse auf einen winzigen Nanodraht aus Gold. Die ultrakurzen Laserpulse regten die frei beweglichen Elektronen im Metall zu Schwingungen an. An der Oberfläche des Drahtes entstanden dadurch elektromagnetische „Nahfelder“. Die Nahfelder pulsierten dann um wenige hundert Attosekunden verschoben gegenüber der Welle des anregenden Lichtfeldes (eine Attosekunde ist ein Milliardstel einer milliardstel Sekunde). Mit Attosekunden Lichtblitzen, die die Forscher anschließend auf den Nanodraht schickten, konnten sie diese winzige Verschiebung der Nahfelder vermessen.

Fällt Licht auf Metalle, kann das im Mikrokosmos eigenartige Dinge an deren Oberfläche auslösen. Das elektromagnetische Feld des Lichts regt Elektronen in den Metallatomen zum Schwingen an. Durch diese Wechselwirkung entstehen sogenannte „Nahfelder“ – elektromagnetische Felder, die nahe der Oberfläche des Metalls lokalisiert sind.

Wie sich diese Nahfelder unter Lichteinfluss verhalten, hat jetzt ein internationales Team von Physikern im Labor für Attosekundenphysik der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik in enger Zusammenarbeit mit Wissenschaftlern des Lehrstuhls für Laserphysik der Friedrich-Alexander-Universität Erlangen-Nürnberg beobachtet.

Dazu schickten die Forscher starke Infrarot-Laserpulse auf einen Nanodraht aus Gold. Diese Laserpulse sind so kurz, dass sie nur über wenige Schwingungen des Lichtfeldes verfügen. Beim Auftreffen auf die Nanonadel regte das Licht kollektive Schwingungen der leitenden Elektronen in dem Verbund aus Goldatomen an. Die Elektronenbewegungen bewirkten die Ausbildung der Nahfelder an der Oberfläche des Drahtes.

Nun wollten die Physiker herausfinden, in welcher zeitlichen Relation die Nahfelder zu den Lichtfeldern standen. Dazu schickten sie kurz nach dem ersten Laserpuls einen zweiten, nur einige hundert Attosekunden kurzen Lichtblitz auf die Nanostruktur. Der zweite Blitz löste einzelne Elektronen aus dem Nanodraht aus. An der Oberfläche angekommen, wurden die Teilchen durch die Nahfelder beschleunigt und detektiert. Die Analyse dieser Teilchen ergab, dass die Nahfelder rund 250 Attosekunden zeitversetzt zum einfallenden Licht schwingen und seinem Feld quasi voraneilen. Das heißt: Die Nahfeld-Schwingungen erreichen 250 Attosekunden früher einen maximalen Ausschlag als die Schwingung des Lichtfeldes.

„Mit der von uns demonstrierten Messmethode können Felder und Oberflächenwellen an Nanostrukturen, welche in der Lichtwellen-Elektronik eine zentrale Rolle spielen, gestochen scharf abgebildet werden.“, erklärt Prof. Matthias Kling, der Leiter der Experimente in München.

Die Versuche ebnen den Weg hin zu komplexeren Studien der Licht-Materie Wechselwirkung an für die Nanooptik geeigneten Metallen und damit für eine lichtgetriebene Elektronik der Zukunft. Diese Elektronik würde mit Frequenzen von Licht betrieben. Licht schwingt etwa eine Million Milliarden Mal pro Sekunde, also mit Petahertz-Frequenzen. Ebenso viele Schaltvorgänge wären denkbar, rund 100.000 mehr als heute. Die ultimative Grenze der Datenverarbeitung wäre damit erreicht.

Originalveröffentlichung:
B. Förg, J. Schötz, F. Süßmann, M. Förster, M. Krüger, B. Ahn, W. A. Okell, K. Wintersperger, S. Zherebtsov, A. Guggenmos, V. Pervak, A. Kessel, S. A. Trushin, A. M. Azzeer, M. I. Stockman, D. Kim, F. Krausz, P. Hommelhoff, M.F. Kling; "Attosecond nanoscale near-field sampling"; Nature Communications; 31. Mai 2016, 7:11717

Fakten, Hintergründe, Dossiers

  • MPI für Quantenoptik
  • LMU
  • Friedrich-Alexander…

Mehr über MPI für Quantenoptik

  • News

    Unverwechselbarer molekularer Fingerabdruck

    In Organismen zirkulieren die verschiedensten Arten von Molekülen. Der Stoffwechsel lässt in den Zellen ständig verschiedenste neue Moleküle entstehen, die auch in die Umgebung, etwa in das Blut, abgegeben werden. Eines der großen Ziele der Biomedizin ist es, diesen Molekülmix detailliert z ... mehr

    Ultraschneller Blick in die Photochemie der Atmosphäre

    Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf den Einfluss von Strahlung. Einen dieser Prozesse hat das Team um Professor Matthias Kling und Dr. Boris Bergues vom Labor für Attos ... mehr

    Direkte Abbildung von Riesenmolekülen

    Die optische Auflösung einzelner Konstituenten herkömmlicher Moleküle ist aufgrund der kleinen Bindungslänge im Sub-Nanometerbereich bisher nicht möglich. Physikern unter Leitung von Prof. Immanuel Bloch, Direktor der Abteilung Quantenvielteilchensysteme am MPQ,  ist es nun jedoch gelungen, ... mehr

Mehr über LMU

  • News

    Der Bauplan für einen Impfstoff gegen SARS-CoV-2 ist fertig

    Noch in diesem Jahr soll ein potenzieller Impfstoff gegen SARS-CoV-2 in ersten klinischen Versuchen am Menschen getestet werden. „Der Bauplan für den Impfstoff ist fertig. Jetzt muss der Impfstoff für die klinischen Tests noch produziert werden“, erklärt Prof. Dr. Stephan Becker. Der Leiter ... mehr

    Eine Art Fischer-Dübel der Biophysik

    Die Interaktion zwischen den Molekülen Biotin und Streptavidin ist ein wichtiges Werkzeug in der Forschung. LMU-Physiker haben die mechanische Stabilität dieser Verbindung nun detailliert untersucht und zeigen: Es kommt auf die Geometrie an. Mechanische Kräfte beeinflussen viele biologische ... mehr

    Mitochondrien - Spezialschleuse für Sperrgut

    Bereits in ihre 3D-Struktur gefaltete Proteine sind gewissermaßen Sperrgut in der Zelle. LMU-Wissenschaftler haben erstmals die Struktur eines Transportsystems für solche Proteine aufgeklärt und zeigen: In Mitochondrien ähnelt es einer Luftschleuse. Viele Proteine mit wichtigen Funktionen ... mehr

  • q&more Artikel

    Code erkannt

    Der genetische Code codiert alle Informationen, die in jeder Zelle für die ­korrekte Funktion und Interaktion der Zelle mit der Umgebung notwendig sind. Aufgebaut wird er aus vier unterschiedlichen Molekülen, den so genannten ­kanonischen Watson-Crick-Basen Adenin, Cytosin, Guanin und Thymi ... mehr

  • Autoren

    Prof. Dr. Thomas Carell

    Thomas Carell, Jg. 1966, studierte Chemie und fertigte seine Doktorarbeit am Max-Planck Institut für Medizinische Forschung unter der Anleitung von Prof. Dr. Dr. H. A. Staab an. Nach einem Forschungs-aufenthalt in den USA ging er an die ETH Zürich in das Laboratorium für Organische Chemie u ... mehr

Mehr über Friedrich-Alexander-Universität Erlangen-Nürnberg

  • News

    Nanopartikel mit neuartigen elektronischen Eigenschaften

    Die optischen und elektronischen Eigenschaften von Aluminiumoxid-Nanopartikeln, die eigentlich elektronisch inert und optisch inaktiv sind, können gesteuert werden. Das haben Forscher des Lehrstuhls für Organische Chemie II der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) herausg ... mehr

    Reißverschluss auf Nano-Ebene

    Für die Nanoelektronik sind kohlenstoffbasierte Nanostrukturen vielversprechende Materialien. Doch dafür müssten sie sich häufig auf nicht-metallischen Oberflächen bilden, was nur schwer möglich ist – bis jetzt: Wissenschaftler der FAU haben eine Methode gefunden, Nanographen auf Metalloxid ... mehr

    Zellen, die den Darm zerstören

    Mehr als 400.000 Menschen in Deutschland sind von den chronisch-entzündlichen Darmerkrankungen Morbus Crohn oder Colitis ulcerosa betroffen, die in Schüben verlaufen und das Darmgewebe zerstören. Die chronische Entzündung kann nach wie vor bei einer Vielzahl von Patienten nicht ausreichend ... mehr

  • q&more Artikel

    Bunte Fehlgerüche in Künstlerfarben

    Farben auf Acrylbasis gehören zu den am häufigsten verwendeten Farben. Obwohl die Farben auf Wasserbasis hergestellt werden können und dabei geringe Anteile an flüchtigen Substanzen in der Produktion zum Einsatz kommen, weisen Acrylfarben dennoch häufig einen starken Eigengeruch auf. Bislan ... mehr

    Modellierte Medikamente

    Computergestütztes Medikamentendesign (CADD) ist nichts Neues. Das Journal of ­Computer-Aided Molecular Design (Springer) wurde 1987 gegründet, als die 500 weltweit schnellsten Computer langsamer als ein heutiges Smartphone waren. Damit ist dieses Feld ein Vierteljahrhundert alt. mehr

  • Autoren

    Prof. Dr. Andrea Büttner

    Andrea Büttner, Jahrgang 1971, studierte Lebensmittelchemie an der Ludwig-Maximilians-Universität München. Anschließend promovierte und habilitierte sie an der Technischen Universität München im Bereich Aromaforschung. Seit 2007 baute sie am Fraunhofer IVV das Geschäftsfeld Produktwirkung s ... mehr

    Prof. Dr. Timothy Clark

    Tim Clark, geb. 1949 in England, promovierte 1973 an der Queens Universität Belfast. Er ist Direktor des Computer-Chemie-­Centrums in Erlangen sowie des Centre for Molecular Design an der Universität Portsmouth, UK. Er entwickelt und wendet Modelle und Simulationstechniken für Chemie, Werks ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.