q&more
Meine Merkliste
my.chemie.de  
Login  

News

Entwicklung hochpräziser Kernuhr rückt näher

Zeitmessung mithilfe der Schwingungen von Atomkernen könnte die Präzision herkömmlicher Atomuhren deutlich übertreffen

© Christoph Düllmann

Kernuhr, die auf einem Übergang im Atomkern des schweren Thorium-229 basiert: Die beim Kernübergang vom Isomer in den Grundzustand freiwerdenden Elektronen (oben rechts) wurden erstmals direkt nachgewiesen.

09.05.2016: Atomuhren sind die genauesten Uhren der Welt. Den Rekord hält derzeit eine Uhr, die in 20 Milliarden Jahren nur eine Sekunde abweicht. Unter der Leitung von PD Dr. Peter Thirolf von der Ludwig-Maximilians-Universität (LMU) München und seiner Arbeitsgruppe hat ein Team, dem auch Wissenschaftler und Ingenieure der Johannes Gutenberg-Universität Mainz (JGU), des Helmholtz-Instituts Mainz (HIM) und des GSI Helmholtzzentrums für Schwerionenforschung in Darmstadt angehören, nun erstmals einen seit 40 Jahren weltweit gesuchten Anregungszustand des Elements Thorium experimentell nachgewiesen, mit dessen Hilfe diese Genauigkeit sogar noch etwa zehnfach verbessert werden könnte.

Schwingungen als Taktgeber

Die Sekunde ist die Basiseinheit der messbaren Zeit. Herkömmliche Atomuhren ermitteln die Dauer einer Sekunde über Schwingungen, die angeregte Elektronen in der Elektronenhülle des Elements Cäsium aussenden. Die derzeit beste Atomuhr erreicht eine relative Genauigkeit von fast 10-18. "Noch viel präzisere Messungen wären mit einer sogenannten Kernuhr möglich, bei der nicht Schwingungen in der Elektronenhülle eines Atoms gemessen würden, sondern Schwingungen direkt im Atomkern", erläutert Thirolf. "Eine solche Uhr hätte außerdem den Vorteil, dass Atomkerne etwa 100.000 Mal kleiner sind als ganze Atome und daher wesentlich unempfindlicher auf Störeinflüsse von außen reagieren."

Allerdings ist von allen bisher bekannten über 3.300 Atomkernen nur ein einziger potenziell für den Einsatz als Kernuhr geeignet: der schwere Atomkern des Elements Thorium mit der Massenzahl 229 (Thorium-229). Seit mehr als 40 Jahren vermuten Wissenschaftler, dass es für diesen Atomkern einen Anregungszustand (Isomer) gibt, der nur knapp über dem energetischen Grundzustand liegt, das sogenannte Thorium-Isomer Th-229m. Dieses Isomer stellt den niedrigsten Anregungszustand aller bekannten Atomkerne dar. Zusätzlich wird für Th-229m eine relativ lange Lebensdauer von einigen Minuten bis zu Stunden erwartet. Deswegen geht man davon aus, dass extrem genaue Messungen der Schwingungen, die beim Kernübergang von Th-229m zurück zum Grundzustand entstehen, möglich sind.

Kernübergang erstmals direkt nachgewiesen

Allerdings konnte das Thorium-Isomer Th-229m bisher noch nie direkt nachgewiesen werden. "Dass es existiert, ging bislang nur aus indirekten Messungen hervor", so Thirolf. In einem komplexen Experiment ist es den Wissenschaftlern nun erstmals gelungen, das Isomer direkt nachzuweisen. Dabei nutzten sie den radioaktiven Alpha-Zerfall von Uran-233 als Quelle: Eines der Zerfallsprodukte von Uran-233 ist Th-229m. "Das Uran-233 wurde im Institut für Kernchemie der Johannes Gutenberg-Universität Mainz chemisch gereinigt und von unserem Team aus Mainzer und Darmstädter Experten als hochreine Dünnschicht auf einem titanbeschichteten Silicium-Wafer aus der Halbleiterindustrie abgeschieden. Diese Uran-233-Quelle wurde danach in München in die Experimentierapparatur eingebaut und lieferte dort das zu untersuchende Th-229m", erklärt Univ.-Prof. Dr. Christoph Düllmann, der die entsprechenden Arbeitsgruppen in Mainz und Darmstadt leitet.

"Das Th-229m wurde über mehrere Zwischenschritte schließlich als Ionenstrahl isoliert. Mithilfe eines Mikrokanalplattendetektors konnten wir dann den Kernübergang, also den Zerfall des Isomers zurück zum Grundzustand von Thorium, als klares und eindeutiges Signal messen – und so direkt nachweisen, dass dieser angeregte Zustand tatsächlich existiert", berichtet Thirolf. "Das ist ein Fortschritt, der für die zukünftige Entwicklung einer Kernuhr entscheidend ist", betont der LMU-Physiker. "Im Rahmen des europäischen Forschungsverbunds nuClock werden wir dieses Ziel weiter verfolgen. Als nächstes müssen nun die Eigenschaften des Kernübergangs genauer bestimmt werden, also seine Halbwertszeit und vor allem die genaue Übergangsenergie. Mithilfe dieser Daten könnten Laserphysiker einen auf die Übergangsfrequenz abgestimmten Laser entwickeln – eine wichtige Voraussetzung, um die Kernanregung optisch zu kontrollieren." Prof. Dr. Thomas Stöhlker, Forschungsdirektor des GSI Helmholtzzentrums in Darmstadt, betont: "Diese neuen Befunde sind sehr wertvoll, auch für die am GSI/FAIR-Speicherring geplanten Experimente zum Th-229m, insbesondere zur Energiebestimmung des Übergangs."

Originalveröffentlichung:
L. von der Wense et al.; "Direct detection of the 229Th nuclear clock transition"; Nature; 533, 47-51, 5. Mai 2016

Fakten, Hintergründe, Dossiers

  • Atomuhren
  • Atomkern-Uhren
  • LMU
  • Uni Mainz
  • GSI
  • Thorium

Mehr über Uni Mainz

Mehr über LMU

  • News

    Ein Transistor für alle Fälle

    Ob Handy, Kühlschrank oder Flugzeug: Transistoren sind überall verbaut. LMU-Physiker haben jetzt einen nanoskopisch kleinen Transistor aus organischem Halbleitermaterial entwickelt, der sowohl bei niedrigem als auch hohem Strom bestens funktioniert. Transistoren sind Halbleiter-Bauelemente, ... mehr

    Blinzelcode für Moleküle

    Der LMU-Physiker Ralf Jungmann hat superauflösende Fluoreszenzmikroskopieverfahren entscheidend vorangebracht: Mit neuen Sonden kann er zahlreiche verschiedene Moleküle gleichzeitig detektieren – jedes blinkt auf charakteristische Weise. Blinksignale für die Nanowelt: Ralf Jungmann, Profess ... mehr

    Katalysatoren: Fluktuationen machen den Weg frei

    LMU-Chemiker haben einen Mechanismus identifiziert, mit dessen Hilfe sich Moleküle schnell über eine voll besetzte Katalysatoroberfläche bewegen können – besonders unter industriellen Bedingungen ein wichtiger Prozess. Katalysatoren machen viele technische Verfahren überhaupt erst möglich. ... mehr

  • q&more Artikel

    Code erkannt

    Der genetische Code codiert alle Informationen, die in jeder Zelle für die ­korrekte Funktion und Interaktion der Zelle mit der Umgebung notwendig sind. Aufgebaut wird er aus vier unterschiedlichen Molekülen, den so genannten ­kanonischen Watson-Crick-Basen Adenin, Cytosin, Guanin und Thymi ... mehr

  • Autoren

    Prof. Dr. Thomas Carell

    Thomas Carell, Jg. 1966, studierte Chemie und fertigte seine Doktorarbeit am Max-Planck Institut für Medizinische Forschung unter der Anleitung von Prof. Dr. Dr. H. A. Staab an. Nach einem Forschungs-aufenthalt in den USA ging er an die ETH Zürich in das Laboratorium für Organische Chemie u ... mehr

Mehr über GSI

  • News

    Ordnung im Periodensystem – Ionisierungsenergien bestätigt Actinoiden-Serienende bei Lawrencium

    Eine internationale Gruppe von Forschern unter Beteiligung des GSI Helmholtzzentrums für Schwerionenforschung in Darmstadt sowie seiner beiden Außenstellen, den Helmholtz-Instituten Mainz und Jena, hat die ersten Ionisierungsenergien der künstlich erzeugten Elemente Fermium, Mendelevium, No ... mehr

    Ionen gegen Herzrhythmusstörungen

    Biophysiker von GSI und Mediziner der Universität Heidelberg sowie der Mayo Clinic in den USA haben am GSI Helmholtzzentrum für Schwerionenforschung ein Verfahren entwickelt und getestet, mit dem in Zukunft Herzrhythmusstörungen behandelt werden können. Die bei der Tumorbehandlung erfolgrei ... mehr

    Bilder machen mit Protonen

    Am Ringbeschleuniger der GSI Helmholtzzentrum für Schwerionenforschung GmbH in Darmstadt wurde im April 2014 erstmals eine Anlage zur Mikroskopie mit Protonen in Betrieb genommen. Protonen sind neben den Neutronen die Bausteine, aus denen Atomkerne aufgebaut sind. Ähnlich wie Röntgenstrahle ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.