q&more
Meine Merkliste
my.chemie.de  
Login  

News

Forscher nutzen Cyanobakterien für Produktion von Chemikalien

Chemische Prozesse nachhaltig gestalten

© RUB, Marquard

Prof. Dr. Robert Kourist (links) und Dr. Marc Nowaczyk sind sich sicher, dass ihre gentechnisch veränderten Cyanobakterien helfen werden, die chemische Industrie sauberer zu machen.

01.04.2016: Bochumer Forscher haben Cyanobakterien so verändert, dass sie die Synthese wertvoller Feinchemikalien katalysieren. Die für die enzymatische Katalyse notwendige Energie produzieren die Mikroorganismen durch Fotosynthese selbst.

Ziel: Energieverbrauch verringern

Die chemische Industrie verbraucht enorme Mengen fossiler Energie und produziert gleichzeitig viel Abfall. Der Bedarf an neuen, umweltfreundlichen Prozessen und Produkten ist daher groß.

An der RUB forschen zwei Wissenschaftler an einem ressourcenschonenderen und damit nachhaltigeren Ansatz: Prof. Dr. Robert Kourist und Dr. Marc Nowaczyk ist es gelungen, Cyanobakterien gentechnisch so zu verändern, dass sie Enzyme produzieren, mit denen sich Chemikalien herstellen lassen. Die Energie, die sie zur Katalyse der Vorgänge benötigen, gewinnen die Bakterien direkt aus Sonnenlicht.

Die Sonne liefert die notwendige Energie

Um ihrer Funktion als Biokatalysatoren nachzukommen, benötigen viele Enzyme chemische Energie. Die muss man ihnen für gewöhnlich in Form von Zucker oder anderen energiereichen Verbindungen zuführen. Die Bochumer Forscher nutzen den Umstand aus, dass Cyanobakterien, ähnlich wie Pflanzen, Fotosynthese betreiben und auf diese Weise Sonnenlicht als Energiequelle heranziehen können. Die gentechnisch veränderten Mikroben sind in der Lage, die gewünschten Enzyme mit eben dieser Energie zu versorgen, was sie unabhängig von Zucker macht.

Keine unerwünschten Nebenprodukte

Für ihre Arbeit verwendeten die Bochumer Biologen erstmals gentechnisch veränderte lebende Cyanobakterien. „Besonders wichtig ist uns die Beobachtung, dass die Cyanobakterien in unseren Versuchen ausschließlich die Synthese der gewünschten Chemikalie katalysierten und damit selektiv arbeiteten“, so Marc Nowaczyk.

In vielen katalytischen Prozessen entsteht nicht nur ein Produkt, sondern noch ein spiegelbildliches. Das müssen die Forscher aufgrund seiner abweichenden biologischen Wirkung zunächst mühsam abtrennen. „Die ausgezeichnete Selektivität ist eine wichtige Voraussetzung für eine industrielle Nutzung“, erklärt Robert Kourist.

Breites Anwendungsspektrum

Die Versuche zeigten zudem, dass Enzyme aus anderen Organismen erfolgreich in Cyanobakterien eingeführt werden können. Damit kann das Verfahren für eine Vielzahl an Reaktionen eingesetzt werden.

„Die chemische Industrie muss noch sauberer werden“, formuliert Robert Kourist das große Ziel der Forscher. Die Fotosynthese für die Katalyse chemischer Reaktionen zu nutzen, sei ein vielversprechender Ansatz in diese Richtung.

Originalveröffentlichung:
K. Köninger, A. Gomez-Baraibar, C. Mügge, C. Paul., F. Hollmann, M. Nowaczyk, R. Kourist; "Recombinant cyanobacteria as tools for asymmetric C=C bond reduction fueled by biocatalytic water oxidation"; Angewandte. Chemie; 2016

Fakten, Hintergründe, Dossiers

  • gentechnisch veränd…

Mehr über Ruhr-Universität Bochum

  • News

    Lebenszyklus winziger Katalysatorpartikel beobachtet

    Weil sie so winzig sind, sind einzelne Nanopartikel schwer zu untersuchen. Aber genau das wollen Forscher, um später ihre Eigenschaften maßschneidern zu können. Ein neuer Ansatz: Partikel am Stiel. Nanopartikel sind vielfältig als Katalysatoren einsetzbar. Um sie so maßschneidern zu können, ... mehr

    Alzheimer im Mini-Gehirn

    Die Ursachen der Erkrankung liegen größtenteils im Dunkeln. An Gehirn-Organoiden aus Stammzellen wollen Forscher sie entlarven. Die meisten Fälle von Demenz gehen auf die Alzheimer-Krankheit zurück. Über ihre Ursachen weiß man wenig. Fest steht, dass sich im Gehirn von Alzheimer-Patienten P ... mehr

    Wie Nervenzellen fehlgefaltete Proteine kontrollieren

    Die Huntington-, Parkinson- und weitere Erkrankungen gehen mit der Fehlfaltung und Aggregation von Proteinen einher. Forscher haben einen Mechanismus entdeckt, wie sich Zellen schützen – ein Ansatz für die Therapie. Forscher haben einen Proteinkomplex identifiziert, der fehlgefaltete Protei ... mehr

  • q&more Artikel

    Vibrationsspektroskopie - Labelfreies Imaging

    Spektroskopische Methoden erlauben heute mit bisher unerreichter räumlicher und zeitlicher Auflösung tiefe Einblicke in die Funktionsweise biologischer Systeme. Neben der bereits sehr gut etablierten Fluoreszenzspektroskopie wird in den letzten Jahren das große Potenzial der labelfreien Vib ... mehr

  • Autoren

    Prof. Dr. Klaus Gerwert

    Jg. 1956, studierte Physik in Münster und promovierte 1985 in biophysikalischer Chemie in Freiburg. Nach Stationen am Max-Planck-Institut für Molekulare Physiologie in Dortmund und am Scripps Research Institute in La Jolla, USA erhielt er 1993 einen Ruf auf die C4-Professur für Biophysik ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.