04.02.2016 - Karlsruher Institut für Technologie (KIT)

Weltweit kleinstes Fachwerk

Das kleinste von Menschen gemachte Fachwerk haben Forscher des KIT nun in der Fachzeitschrift Nature Materials vorgestellt. Mit Strebenlängen von unter einem Mikrometer und Strebendurchmessern von 200 Nanometern sind seine Bauteile aus glasartigem Kohlenstoff rund einen Faktor fünf kleiner als vergleichbare sogenannte Metamaterialien. Durch die kleine Dimension werden bisher unerreichte Verhältnisse von Festigkeit zu Dichte erzielt. Anwendungen als Elektroden, Filter oder optische Bauteile könnten möglich werden.

„Leichtbau-Werkstoffe wie Knochen und Holz findet man überall in der Natur“, erklärt Dr.-Ing. Jens Bauer vom Karlsruher Institut für Technologie, Erstautor der Studie. „Sie vereinen hohe Tragkraft und kleines Gewicht und sind so ein Vorbild für mechanische Metamaterialien für technische Anwendungen.“

Metamaterialien sind Stoffe, deren Struktur im Größenbereich von Mikrometern gezielt so geplant und hergestellt werden, dass sie mechanische oder etwa optische Eigenschaften besitzen, die unstrukturierte Feststoffe prinzipiell nicht erreichen können. Beispiele sind Tarnkappen, die Licht, Schall oder Wärme um Objekte herum leiten, Materialien, die kontra-intuitiv auf Druck und Scherung reagieren (auxetisch) oder Leichtbau-Nanowerkstoffe, die hohe spezifische Stabilität aufweisen (Kraft pro Fläche und Dichte).

Für das nun vorgestellte stabile Fachwerk, mit den weltweit, kleinsten Strukturen, nutzte Bauer zunächst die bewährte 3-D-Laserlithografie. Laserstrahlen härten computergesteuert die gewünschte mikrometergroße Struktur in einem Photolack aus. Die Auflösung des Verfahrens erlaubt es allerdings nur, Streben von rund 5-10 Mikrometer Länge und einem Mikrometer Durchmesser zu erstellen. Im anschließenden Schritt wird die Struktur mittels Pyrolyse geschrumpft und verglast. Damit wird erstmals bei der Herstellung mikrostrukturierte Fachwerke Pyrolyse genutzt: Das Objekt wird in einem Vakuum-Ofen Temperaturen von rund 900 Grad Celsius ausgesetzt, wodurch die chemischen Bindungen sich neu orientieren. Dabei entweichen alle Elemente aus dem Lack außer dem Kohlenstoff, welcher in seiner ungeordneten Form als Glaskohlenstoff in der geschrumpften Fachwerkstruktur zurückbleibt. Die gewonnenen Strukturen setzen die Forscher mit einem Stempel unter Druck und testeten so ihre Stabilität.

„Die Ergebnisse zeigen, dass die Belastbarkeit des Fachwerks sehr nahe an der theoretisch Möglichen und weit über der von unstrukturiertem glasartigem Kohlenstoff liegt“, berichtet Prof. Oliver Kraft, Mitautor der Studie. Er war bis Ende letzten Jahres Leiter des Instituts für Angewandte Materialien des KIT und ist seit diesem Jahr Vizepräsident für Forschung des KIT. „Diamant ist noch der einzige Feststoff, der eine höhere spezifische Stabilität aufweist.“

Mikrostrukturierte Materialien dienen oft zur Isolation oder als Stoßdämpfer. Offenporige Stoffe können als Filter in der chemischen Industrie genutzt werden. Metamaterialien haben auch außergewöhnliche optische Eigenschaften, die in der Telekomunikation eingesetzt werden können. Glaskohlenstoff ist ein hochtechnologischer Werkstoff aus reinem Kohlenstoff, der glasartige keramische Eigenschaften mit denen des Graphits vereint. Er ist als Werkstoff in Elektroden von Batterien oder Elektrolyseanlagen interessant.

Fakten, Hintergründe, Dossiers

Mehr über KIT

  • News

    Maschinelles Lernen beschleunigt Materialsimulationen

    Erforschung, Entwicklung und Herstellung neuer Materialien hängen entscheidend von schnellen und zugleich genauen Simulationsmethoden ab. Maschinelles Lernen, bei dem Künstliche Intelligenz (KI) selbstständig neues Wissen erwirbt und anwendet, wird es künftig ermöglichen, komplexe Materials ... mehr

    Katalysatorforschung: Molekulare Sonden erfordern hochgenaue Rechnungen

    Katalysatoren machen viele Technologien überhaupt erst möglich. Um heterogene Katalysatoren weiter zu verbessern, bedarf es der Analyse der komplexen Prozesse an ihrer Oberfläche, wo sich die aktiven Zentren befinden. Forschende des Karlsruher Instituts für Technologie (KIT) haben mit Kolle ... mehr

    Nanostrukturen helfen, die Haftung von Krankenhauskeimen zu reduzieren

    Wissenschaftler der Universität des Saarlandes und des Karlsruher Instituts für Technologie haben gemeinsam herausgefunden, wie Bakterien auf – in mikroskopischen Maßstäben – rauen Oberflächen haften. Das Team aus den Disziplinen Physik, Mikrobiologie und Mathematik entdeckte, dass aus der ... mehr

  • q&more Artikel

    Analytische Quantifizierung von Gluten in Lebensmitteln

    Der Gesetzgebung zufolge dürfen Lebensmittel, die mit einem Glutenfrei-Symbol versehen sind, nicht mehr als 20 mg Gluten pro Kilogramm enthalten, was für Zöliakie-Betroffene aus gesundheitlichen Gründen lebenswichtig ist. mehr

    Bewertung der Lungentoxizität von Luftschadstoffen

    Die aktuellen Diskussionen zu Fahrverboten in europäischen Städten zeigen einerseits den hohen Stellenwert, den die Bevölkerung der Luftqualität zumisst, und andererseits den Mangel an Methoden, die von Luftschadstoffen ausgehende Beeinträchtigung der menschlichen Gesundheit direkt zu bewerten. mehr

    Biochemie in der Mikrowelle

    Die Entwicklung neuer Pharmazeutika beruht auf dem zunehmenden Verständnis intrazellulärer Vorgänge. Insbesondere durch die Erforschung von Ligand-Rezeptor-Wechselwirkungen können Wirkstoffe ­besser angepasst werden. Um Medikamente an ihren Wirkungsort ­zu bringen, werden sog. „Carrier“-Mol ... mehr

  • Autoren

    Prof. Dr. Katharina Scherf

    Katharina Scherf, Jahrgang 1985, studierte Lebensmittelchemie an der Technischen Universität München (TUM). Ihre Promotion und Habilitation erwarb sie ebenfalls an der TUM und war als leitende Wissenschaftlerin am Leibniz-Institut für Lebensmittel-Systembiologie an der TUM tätig. 2019 wurde ... mehr

    Majlinda Xhaferaj

    Majlinda Xhaferaj, Jahrgang 1992, schloss ihr Lebensmittelchemiestudium im Jahr 2018 am Karlsruher Institut für Technologie (KIT) ab. Seit 2019 ist sie Doktorandin in der Abteilung für Bioaktive und Funktionelle Lebensmittelinhaltsstoffe mit dem Schwerpunkt der Glutenanalytik zur Verbesseru ... mehr

    Dipl. Ing. Sonja Mülhopt

    Sonja Mülhopt erwarb 2000 ihr Diplom für Maschinenbau an der Berufsakademie (heute DHBW) Mannheim. Die begleitende Ausbildung durchlief sie am Forschungszentrum Karlsruhe, dem heutigen Karlsruher Institut für Technologie (KIT). 2014 erhielt sie den Master of Science für Chemieingenieurwesen ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: