17.12.2015 - Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Kleinstes Farbbild der Welt

Forscher der ETH Zürich und des ETH-Spin-offs Scrona können sich bei Guinness World Records Limited eintragen lassen: Sie haben das kleinste Inkjet-Farbbild der Welt gedruckt. Diesen Rekord erzielten sie mit einer neuen 3D-Nanodruck-Technologie, die an der ETH Zürich entwickelt wurde und von Scrona kommerzialisiert wird.

Das ausgedruckte Bild misst gerade mal 0,0092 Quadratmillimeter und hat Seitenlängen von 80 respektive 115 Mikrometern. Dies entspricht der Schnittfläche eines menschlichen Haares oder der Grösse eines einzelnen Pixels eines Retina-Bildschirms von Apple. «Dieses Bild ist so winzig, dass es von blossem Auge nicht mehr sichtbar ist», sagt der ehemalige ETH-Forscher und Scrona-Mitgründer Patrick Galliker, der bei Professor Dimos Poulikakos doktorierte und noch immer mit dessen Institut assoziiert ist. Damit unabhängige, von Guinness World Records Limited verifizierte Experten das Mikrobild sehen konnten, mussten sie ein spezielles Mikroskop verwenden.

Bild auf Querschnitt eines Haars

Auf dem Bild zu sehen sind Clownfische, die sich um eine Seeanemone aufhalten. In natura werden die Fische 10 Zentimeter gross. Für das Bild wurden sie um den Faktor 3333 auf eine Grösse von 30 Mikrometer geschrumpft. Dank der verwendeten 24-bit-Farbtiefe des Ausdrucks erscheint die Unterwasserszenerie lebensecht und natürlich.

Der Grund für die lebhafte Darstellung sind sogenannte Quanten-Punkte (englisch: Quantum Dots, QD). Dabei handelt es sich um Nanopartikel, die in spezifischen Farben leuchten. Indem die Forscher die Grösse der QD verändern, können sie die Farbe des abgegebenen Lichts nach Wunsch festlegen. Die Farben von Quanten-Punkten leuchten sehr intensiv, weshalb sie derzeit auch vermehrt für die Herstellung von Flachbildschirmen eingesetzt werden.

16 Mio. Farben in Nano-Präzision

Um die Clownfische und ihre Anemone darzustellen, wurden mehrere Lagen von roten, grünen und blauen QDs übereinander gedruckt. Die Auflösung beträgt 25‘000 dpi, der Abstand zwischen zwei Pixeln beträgt damit nur 500 Nanometer. Um die Farbtiefe von 24 bit zu erreichen, musste die Dicke der Schichten mit höchster Präzision im atomaren Bereich festgelegt werden - und das bei jedem einzelnen Pixel.

Bis anhin war es nicht einmal mit modernster Halbleiter-Technik möglich, solche Nanostrukturen, wie sie für diesen Weltrekord erzielt wurden, von derart hoher Präzision zu erschaffen. Das Bild von Scrona und den ETH-Forschern ist deshalb nicht einfach nur ein netter Gag, sondern es ist eine vielversprechende Alternative für die Herstellung von Bildschirmen oder optischen Geräten.

Bis es soweit ist, müssen die Forschenden die Geschwindigkeit des Druckvorgangs verbessern. Das Clownfisch-Bild auszudrucken dauerte mehrere Stunden. «Damit sich industriell interessante Mengen produzieren lassen, müssen wir das Tempo stark erhöhen», sagt Galliker. Scrona hat jedoch in den vergangenen zwei Jahren den Prototyp eines skalierten Druckkopfs entwickelt, auf dem schon jetzt hunderte Düsen funktionstüchtig sind. Ausserdem hat sich der ETH Spin-off soeben mit einem grossen Industriekonsortium für ein EU-Projekt beworben, mit dem er die Skalierung vorantreiben will.

Zusammenarbeit trägt Früchte

Diese 3D-Print-Technologie beruht auf einer Zusammenarbeit zweier Arbeitsgruppen an der ETH Zürich und Scrona. Das Optical Materials Engineering Laboratory von Professor David Norris, Träger des Rössler-Preises 2015, stellte die Quanten-Punkte her. In Dimos Poulikakos‘ Arbeitsgruppe wurde die Print-Technik entwickelt.

Scrona sorgt nun für die Skalierung und Kommerzialisierung der Technologie, sodass sie im grossen Massstab eingesetzt werden kann. Wer sich einen Eindruck von der Technologie verschaffen möchte, dem sei die aktuelle Kickstarter-Kampagne des Spin-offs empfohlen. Dabei kann man sich sein persönliches Mikrobild drucken lassen und erhält dazu ein kreditkartengrosses Mikroskop, um das Bild betrachten zu können.

Fakten, Hintergründe, Dossiers

Mehr über ETH Zürich

  • News

    Die Gehirnentwicklung kartieren

    ETH-​Forschende züchten aus Stammzellen menschliches gehirnähnliches Gewebe und kartieren die Zelltypen, die in verschiedenen Hirnregionen vorkommen, sowie die Gene, die deren Entwicklung regulieren. Das hilft bei der Erforschung von Entwicklungsstörungen oder Nervenerkrankungen. Das mensch ... mehr

    Genaktivitäten in lebenden Zellen messen

    Forschende der ETH Zürich und der EPFL erweitern das aufstrebende Feld der Einzel-​Zell-Analysen um eine wegweisende Methode: Live-​seq erlaubt es, die Aktivität von Tausenden von Genen einer einzelnen Zelle zu messen, ohne sie isolieren und zerstören zu müssen. Die moderne Biologie will zu ... mehr

    Hydrogel hält Impfstoffe am Leben

    Viele Impfstoffe müssen während des Transports ständig gekühlt werden, damit sie wirksam bleiben. Ein internationales Forschungsteam unter Federführung der ETH Zürich hat nun ein spezielles Hydrogel entwickelt, das die Haltbarkeit von Impfstoffen auch ohne Kühlung massiv verbessert. Die Erf ... mehr

  • q&more Artikel

    Analytik in Picoliter-Volumina

    Zeit, Kosten und personellen Aufwand senken – viele grundlegende sowie angewandte analytische und diagnostische Herausforderungen können mit Lab-on-a-Chip-Systemen realisiert werden. Sie erlauben die Verringerung von Probenmengen, die Automatisierung und Parallelisierung von Arbeitsschritte ... mehr

    Investition für die Zukunft

    Dies ist das ganz besondere Anliegen und gleichzeitig der Anspruch von Frau Dr. Irmgard Werner, die als Dozentin an der ETH Zürich jährlich rund 65 Pharmaziestudenten im 5. Semester im Praktikum „pharmazeutische Analytik“ betreut. Mit Freude und Begeisterung für ihr Fach stellt sie sich imm ... mehr

  • Autoren

    Prof. Dr. Petra S. Dittrich

    Jg. 1974, ist Außerordentliche Professorin am Department Biosysteme der ETH Zürich. Sie studierte Chemie an der Universität Bielefeld und Universidad de Salamanca (Spanien). Nach der Promotion am Max-Planck-Institut für biophysikalische Chemie in Göttingen war sie Postdoktorandin am ISAS In ... mehr

    Dr. Felix Kurth

    Jg. 1982, studierte Bioingenieurwesen an der Technischen Universität Dortmund und an der Königlich Technischen Hochschule in Stockholm. Für seine Promotion, die er 2015 von der Eidgenössisch Technischen Hochschule in Zürich erlangte, entwickelte er Lab-on-a-Chip Systeme und Methoden zur Qua ... mehr

    Lucas Armbrecht

    Jg. 1989, studierte Mikrosystemtechnik an der Albert-Ludwigs Universität in Freiburg im Breisgau. Während seines Masterstudiums konzentrierte er sich auf die Bereiche Sensorik und Lab-on-a-Chip. Seit dem Juni 2015 forscht er in der Arbeitsgruppe für Bioanalytik im Bereich Einzelzellanalytik ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: