26.11.2015 - Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Eine neue Form von echtem Gold, fast so leicht wie Luft

Forscher der ETH Zürich schufen einen Schaumstoff aus echtem Gold. Es ist die leichteste Form des Edelmetalls, die je hergestellt wurde. Sie ist tausendmal leichter als herkömmliches Gold und von diesem mit blossem Auge kaum zu unterscheiden. Anwendungsmöglichkeiten dafür gibt es viele.

Ein Nugget aus echtem Gold, so leicht, dass es in einer Tasse Cappuccino nicht untergeht, sondern auf dem Milchschaum schwebt – was unglaublich klingt, haben Forschende der ETH Zürich tatsächlich geschaffen. Wissenschaftler unter der Leitung von Raffaele Mezzenga, Professor für Lebensmittel und weiche Materialien, stellten eine neue Art Schaumstoff aus Gold her, ein dreidimensionales Goldgeflecht, das zu einem Grossteil aus Poren besteht. Es handelt sich dabei um den leichtesten je geschaffenen Goldklumpen. «Das sogenannte Aerogel ist tausendmal leichter als ein herkömmliches Goldnugget. Es ist leichter als Wasser und beinahe so leicht wie Luft», sagt Mezzenga.

Von blossem Auge ist die neue Gold-Form kaum von herkömmlichem Gold zu unterscheiden – auch das Aerogel glänzt metallisch. Im Unterschied zur herkömmlichen Form ist es jedoch weich und von Hand verformbar. Es besteht zu 98 Teilen aus Luft, nur zu zwei Teilen aus festem Material. Und von diesem festen Material sind gut vier Fünftel Gold, bei knapp einem Fünftel handelt es sich um Milchprotein-Fasern. Dies entspricht 20 Karat Gold.

Trocknung als Herausforderung

Die Wissenschaftler schufen den porösen Stoff, indem sie zunächst Milchproteine erhitzten, um daraus Nanometer-feine Proteinfasern (amyloide Fibrillen) herzustellen. Diese gaben sie in eine Lösung aus Goldsalz. Darin vernetzten sich die Proteinfasern zu einem Grundgerüst entlang dessen das Gold gleichzeitig zu kleinen Partikeln auskristallisierte. So entstand ein gelartiges Goldfasernetz.

«Eine der grossen Herausforderungen war, dieses feine Netzwerk zu trocknen, ohne es dabei zu zerstören», erklärt Gustav Nyström, Oberassistent in der Gruppe von Mezzenga und Erstautor der entsprechenden Studie in der Fachzeitschrift «Advanced Materials». Da das Trocknen an der Luft die feine Struktur des Goldes beschädigen  könnte, wichen die Wissenschaftler auf einen schonenden und aufwendigen Trocknungsprozess mithilfe von Kohlendioxid aus. Sie arbeiteten dazu zusammen mit Forschern aus der Gruppe von Marco Mazzotti, Professor für Verfahrenstechnik.

Dunkelrotes Gold

Die gewählte Methode, bei der die Goldpartikel direkt bei der Herstellung des Aerogel-Proteingrundgerüsts auskristallisiert werden (und nicht etwa zu einem bestehenden Grundgerüst hinzugegeben werden), ist neu. Der grosse Vorteil der Methode: Sie erlaubt auf einfache Art, ein gleichmässiges Goldaerogel zu erhalten.

Ausserdem bietet die Herstellungstechnik den Wissenschaftlern viele Möglichkeiten, auf einfache Weise die Eigenschaften des Goldes bewusst zu beeinflussen. «Die optischen Eigenschaften von Gold hängen stark von der Grösse und Form der Goldpartikel ab», so Nyström. «Wir können daher die Farbe des Materials verändern. Wenn wir dafür sorgen, dass das Gold nicht zu Mikropartikeln sondern zu kleineren Nanopartikeln auskristallisiert, entsteht dunkelrotes Gold.» Nicht nur die Farbe, auch weitere optische Eigenschaften wie die Absorption und Reflexion können die Wissenschaftler auf diese Weise beeinflussen.

Das neue Material könne dort zum Einsatz kommen, wo bereits heute Gold gebraucht werde, sagt Mezzenga. Die Eigenschaften des Stoffes wie zum Beispiel das geringere Gewicht, der kleinere Materialbedarf oder der poröse Aufbau brächten Vorteile. Der Einsatz in Uhren und Schmuck sind nur eine Möglichkeit. Eine weitere Anwendung ist die chemische Katalyse, wie die Wissenschaftler in ihrer Arbeit zeigten. Da das hochporöse Material eine riesige Oberfläche hat, laufen darin von der Anwesenheit von Gold abhängige chemische Reaktion sehr effizient ab. Ausserdem könnte das Material dort zum Einsatz kommen, wo Licht absorbiert oder reflektiert werden soll. Und schliesslich kann man daraus Drucksensoren herstellen. «Bei normalem Luftdruck berühren sich die einzelnen Goldpartikel im Material nicht, das Goldaerogel leitet Strom nicht», erklärt Mezzenga. «Wird der Druck jedoch erhöht, das Material quasi zusammengepresst, beginnen sich die Partikel zu berühren, das Material wird leitfähig.»

Fakten, Hintergründe, Dossiers

  • Aerogele

Mehr über ETH Zürich

  • News

    Die Gehirnentwicklung kartieren

    ETH-​Forschende züchten aus Stammzellen menschliches gehirnähnliches Gewebe und kartieren die Zelltypen, die in verschiedenen Hirnregionen vorkommen, sowie die Gene, die deren Entwicklung regulieren. Das hilft bei der Erforschung von Entwicklungsstörungen oder Nervenerkrankungen. Das mensch ... mehr

    Genaktivitäten in lebenden Zellen messen

    Forschende der ETH Zürich und der EPFL erweitern das aufstrebende Feld der Einzel-​Zell-Analysen um eine wegweisende Methode: Live-​seq erlaubt es, die Aktivität von Tausenden von Genen einer einzelnen Zelle zu messen, ohne sie isolieren und zerstören zu müssen. Die moderne Biologie will zu ... mehr

    Hydrogel hält Impfstoffe am Leben

    Viele Impfstoffe müssen während des Transports ständig gekühlt werden, damit sie wirksam bleiben. Ein internationales Forschungsteam unter Federführung der ETH Zürich hat nun ein spezielles Hydrogel entwickelt, das die Haltbarkeit von Impfstoffen auch ohne Kühlung massiv verbessert. Die Erf ... mehr

  • q&more Artikel

    Analytik in Picoliter-Volumina

    Zeit, Kosten und personellen Aufwand senken – viele grundlegende sowie angewandte analytische und diagnostische Herausforderungen können mit Lab-on-a-Chip-Systemen realisiert werden. Sie erlauben die Verringerung von Probenmengen, die Automatisierung und Parallelisierung von Arbeitsschritte ... mehr

    Investition für die Zukunft

    Dies ist das ganz besondere Anliegen und gleichzeitig der Anspruch von Frau Dr. Irmgard Werner, die als Dozentin an der ETH Zürich jährlich rund 65 Pharmaziestudenten im 5. Semester im Praktikum „pharmazeutische Analytik“ betreut. Mit Freude und Begeisterung für ihr Fach stellt sie sich imm ... mehr

  • Autoren

    Prof. Dr. Petra S. Dittrich

    Jg. 1974, ist Außerordentliche Professorin am Department Biosysteme der ETH Zürich. Sie studierte Chemie an der Universität Bielefeld und Universidad de Salamanca (Spanien). Nach der Promotion am Max-Planck-Institut für biophysikalische Chemie in Göttingen war sie Postdoktorandin am ISAS In ... mehr

    Dr. Felix Kurth

    Jg. 1982, studierte Bioingenieurwesen an der Technischen Universität Dortmund und an der Königlich Technischen Hochschule in Stockholm. Für seine Promotion, die er 2015 von der Eidgenössisch Technischen Hochschule in Zürich erlangte, entwickelte er Lab-on-a-Chip Systeme und Methoden zur Qua ... mehr

    Lucas Armbrecht

    Jg. 1989, studierte Mikrosystemtechnik an der Albert-Ludwigs Universität in Freiburg im Breisgau. Während seines Masterstudiums konzentrierte er sich auf die Bereiche Sensorik und Lab-on-a-Chip. Seit dem Juni 2015 forscht er in der Arbeitsgruppe für Bioanalytik im Bereich Einzelzellanalytik ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: