q&more
Meine Merkliste
my.chemie.de  
Login  

News

Molekulargenetik vereinfacht Pharmatests

Mediziner klären Wirkungsmechanismen von Krebsmedikamenten auf

mikroskopische Aufnahmen: Autoren

Behandelt man Krebszellen mit RITA (untere Bildreihe), so führt dies zur Beschädigung der DNA (angezeigt durch grüne Färbung), sofern der Reparaturmechanismus der betroffenen Zellen versagt. Die blaue Färbung markiert die Zellkerne.

25.11.2015: Ein neues molekulargenetisches Verfahren hilft, Medikamentenstudien effektiver durchzuführen als bisher, indem es die Wirkungsweise der dabei eingesetzten Moleküle beleuchtet. Das belegt ein Team von Krebsforschern um Professor Dr. Thorsten Stiewe und Dr. Michael Wanzel von der Philipps-Universität Marburg, indem es analysiert, welche Wechselwirkungen das Tumor-unterdrückende Gen p53 mit Bindungspartnern eingeht.

Das Gen p53 unterdrückt Krebs, indem es die Teilung der betroffenen Zellen verhindert. In Tumorzellen verliert das Gen seine Wirkung, weil sein Genprodukt an das Protein Mdm2 gekoppelt vorliegt. „Wir wollten herausfinden, wie Moleküle wirken, die die Blockade von p53 aufheben“, sagt Michael Wanzel. Der Humanbiologe von der Philipps-Universität und seine Koautoren untersuchten hierfür die chemische Verbindung Nutlin, die Mdm2 außer Gefecht setzt, indem sie daran bindet. Außerdem nahm das Team den Wirkstoff RITA unter die Lupe, der an p53 andockt und dessen Interaktion mit Mdm2 hemmt.

Sowohl Nutlin als auch RITA verhindern die Vermehrung von Tumorzellen. Geschieht dies, indem p53 seine Wirkung zurückgewinnt? Um das herauszufinden, nutzten die Wissenschaftler das molekulare System CRISPR/Cas9, mit dem sie Mutationen in das p53-Gen einfügten, wodurch dieses seine krebsunterdrückende Aktivität verliert. Das Ergebnis: Während RITA die Vermehrung von Krebszellen auch ohne p53 verhindert, ist Nutlin dazu nicht in der Lage.

Die Autorengruppe vermutet aufgrund weiterer Resultate, dass RITA der Tumorbildung entgegenwirkt, indem es das Erbmaterial DNA schädigt; die betroffenen Krebszellen schalten daraufhin ein Selbstmordprogramm an und sterben ab. Nutlin hingegen führt dazu, dass p53 die Zellteilung unterdrückt. „Unsere Arbeit zeigt, wie die neue Methode der Genomeditierung mittels CRISPR/Cas9 eingesetzt werden kann, um Wirkmechanismen von Pharmaka aufzuklären“, erklärt Mitverfasser Thorsten Stiewe. „Derartige Untersuchungen tragen nicht nur dazu bei, unnötige klinische Studien zu vermeiden, sondern auch die geeignetste Behandlung für jede Patientin und jeden Patienten auszuwählen.“

Originalveröffentlichung:
Michael Wanzel & al.; "CRISPR/Cas9-based target validation for p53-reactivating model compounds"; Nature Chemical Biology 2015

Fakten, Hintergründe, Dossiers

  • Universität Marburg
  • Molekulargenetik
  • Genomeditierung
  • CRISPR-Cas9-Technik
  • klinische Studien
  • CRISPR/Cas9

Mehr über Universität Marburg

  • News

    Neue Molekülbibliothek hilft bei der systematischen Suche nach Wirkstoffen

    Um die Entwicklung von Medikamenten zu beschleunigen, hat das MX-Team am Helmholtz-Zentrum Berlin (HZB) mit der Drug Design Gruppe der Universität Marburg eine neue Substanzbibliothek aufgebaut. Sie besteht aus 1103 organischen Molekülen, die als Bausteine von neuen Wirkstoffen infrage komm ... mehr

    Der Bauplan für einen Impfstoff gegen SARS-CoV-2 ist fertig

    Noch in diesem Jahr soll ein potenzieller Impfstoff gegen SARS-CoV-2 in ersten klinischen Versuchen am Menschen getestet werden. „Der Bauplan für den Impfstoff ist fertig. Jetzt muss der Impfstoff für die klinischen Tests noch produziert werden“, erklärt Prof. Dr. Stephan Becker. Der Leiter ... mehr

    Neuartige Moleküle ermöglichen gezielte Lichttherapie

    Marburger Chemiker haben eine neuartige Verbindung hergestellt, die Tumore gezielt zerstört. Aktiviert man die Substanz und bestrahlt sie anschließend mit Licht, so erzeugt sie aggressiven Sauerstoff, der das krankhafte Gewebe schädigt. Das berichtet das Team um Juniorprofessorin Olalla Váz ... mehr

  • q&more Artikel

    Von der RNA- zur Protein-Welt

    Die Evolution des tRNA-Prozessierungsenzyms (RNase P) hat in den verschiedenen ­Bereichen des Lebens zu sehr unterschiedlichen architektonischen Lösungen geführt. So ist die bakterielle RNase P grundsätzlich anders aufgebaut als die menschlichen RNase P-Enzyme in Zellkern und Mitochondrien. ... mehr

  • Autoren

    Dennis Walczyk

    Dennis Walczyk, geb. 1984, studierte Chemie an der Philipps-Universität Marburg. Seit 2012 ist er wissenschaftlicher Mitarbeiter und Doktorand in der Arbeitsgruppe von Prof. Dr. Hartmann am Institut für Pharmazeutische Chemie der Universität Marburg und beschäftigt sich dort u.a. mit der En ... mehr

    Prof. Dr. Roland K. Hartmann

    Roland K. Hartmann, geb. 1956, ist Professor der Pharmazeutischen Chemie an der Philipps-Universität Marburg. Er studierte Biochemie an der Freien Universität Berlin, wo er 1988 mit dem Ernst Reuter-Preis für seine hervorragende Dissertation ausgezeichnet wurde. Seine Forschungsinteressen u ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.