21.10.2015 - Albert-Ludwigs-Universität Freiburg

"Bermuda-Cluster" entdeckt

Wissenschaftler isolieren erstmals eine Anhäufung von mehreren Metallatomen und entdecken das „Bermuda-Cluster“

Durch die passende Kombination von einfach negativ geladenen Anionen und neutralen Liganden, einer Art molekularem Stützkorsett, ist es Dr. Martin R. Lichtenthaler aus dem Arbeitskreis von Prof. Dr. Ingo Krossing gelungen, erstmals äußerst seltene und mehrfach positiv geladene kationische Indium-Clusterverbindungen zu isolieren. Diese Anhäufung mehrerer Atome stellt einen wichtigen Beitrag für das grundlegende Verständnis der Wechselwirkung von Metallatomen auf dem Weg vom isolierten Atom zum Nanopartikel und schließlich zum klassischen Metall dar.

75 Prozent der chemischen Elemente sind Metalle. Diese können elementar sein, also ausschließlich aus elektrisch leitenden Metallatomen bestehen. Oder sie liegen als Metall-Komplexverbindung vor, indem ein Metallatom von einer bestimmten Anzahl anderer in Liganden gebundener Atome umgeben ist. Für einen fließenden Übergang zwischen diesen beiden Extremen sorgen Metall-Clusterverbindungen: große Moleküle mit zwei oder mehr direkt miteinander verknüpften Metallatomen, die häufig negativ oder neutral geladen sind, doch sehr selten positiv.

Die Freiburger Wissenschaftler isolierten nun erstmals kationische Indium-Clusterverbindungen mit drei bis vier Indium-Metallatomen. Der Schlüssel zum Erfolg waren schwach koordinierende Anionen. Das sind voluminöse, einfach negativ geladene Anionen, die mit den positiv geladenen Kationen kaum in Wechselwirkung treten. Die Forscher kombinierten diese Anionen mit Chelat-Liganden, die jedes Metallatom in der Clusterverbindung von mindestens zwei Positionen aus umschließen. Die Ergebnisse haben das Team überrascht, da die mehrfach positiv geladenen Verbindungen aufgrund der ausgeprägten Abstoßung gleichnamig geladener Teilchen eigentlich „explodieren“ sollten. „Ich hätte nie gedacht, dass solch kuriose Clusterverbindungen zugänglich sind“, sagt Krossing. „Aufgrund der dreieckigen Struktur bezeichnen wir die neuen Verbindungen als Bermuda-Cluster.“

Analoge Versuche mit Gallium, dem leichteren „Verwandten“ des Indiums, führten zu anderen Ergebnissen: Gallium bildet unter vergleichbaren Bedingungen keine Clusterverbindungen, sondern einen ungewöhnlichen, zweifach positiv geladenen Metallkomplex. In einer Zusammenarbeit mit der Arbeitsgruppe von Prof. Dr. Stefan Weber wiesen die Forscher bei der hochreaktiven Gallium-Komplexverbindung so genannten Paramagnetismus nach, also ungepaarte Elektronen. „Für uns ist das ein klarer Befund, dass das Gallium-Atom an der elektronischen Struktur der eingesetzten Liganden nicht unschuldig ist“, sagt Krossing. Die Wissenschaftler sind überzeugt, dass dieser Ansatz eine neue und allgemein anwendbare Route gerade zu den seltenen positiv geladenen Clusterverbindungen aufzeigt, sofern Metallatome und Liganden passend aufeinander abgestimmt werden.

Fakten, Hintergründe, Dossiers

  • Clusterverbindungen
  • Gallium
  • Uni Freiburg
  • Paramagnetismus

Mehr über Uni Freiburg

  • News

    Eine molekulare Maschine bei der Arbeit

    Das Treibhausgas Distickstoffmonoxid (N2O) entsteht als Nebenprodukt industrieller Prozesse und durch den Einsatz von Düngemitteln in der Landwirtschaft. Es leistet einen stetig wachsenden Beitrag zum Klimawandel und zum Abbau der Ozonschicht. Dabei ist es chemisch so unreaktiv, dass es für ... mehr

    Neue Erkenntnisse zur Entstehung des Immunsystems im Gehirn

    Was ins Gehirn gelangt und was nicht, wird streng kontrolliert. Forscher*innen der Medizinischen Fakultät der Universität Freiburg haben jetzt Fresszellen untersucht, die die Blutgefäße im Gehirn ummanteln und die Blut-Hirn-Schranke verstärken. Wie die Wissenschaftler*innen vom Institut für ... mehr

    Lungengewebe aus dem Labor

    Laboruntersuchungen an Lungengewebe erforderten bisher meist die Entnahme größerer Mengen menschlichen oder tierischen Gewebes. Nun ist es Wissenschaftler*innen der Medizinischen Fakultät der Universität Freiburg gemeinsam mit amerikanischen Forschenden gelungen, aus wenigen Körperzellen im ... mehr

  • q&more Artikel

    Modulare Biofabriken auf Zellebene

    Der „gebürtige Bioorganiker“ hatte sich bei seiner Vorliebe für komplexe Molekülarchitekturen nie die klassische Einteilung von synthetischen Polymeren und biologischen Makromolekülen zu eigen gemacht. Moleküle sind nun mal aus Atomen zusammengesetzt, die einen wie die anderen, warum da ein ... mehr

    Lesezeichen

    Aus einer pluripotenten Stammzelle kann sowohl eine Muskel- als auch eine Leberzelle entstehen, die trotz ihres unterschiedlichen Erscheinungsbildes genetisch identisch sind. Aus ein und demselben ­Genotyp können also verschiedene Phänotypen entstehen – die Epigenetik macht es möglich! Sie ... mehr

  • Autoren

    Dr. Stefan Schiller

    Stefan M. Schiller, Jg. 1971, studierte Chemie mit Schwerpunkt Makromolekulare und Biochemie in Gießen, Mainz und an der University of Massachusetts. Er promovierte bis 2003 am Max-Planck-Institut für Polymerforschung in Mainz über biomimetische Membransysteme, es folgten Forschungsaufentha ... mehr

    Julia M. Wagner

    Julia M. Wagner studierte Pharmazie in Freiburg (Approbation 2008). Seit 2008 ist sie Doktorandin und wissenschaftliche Mitarbeiterin im Arbeitskreis von Professor Dr. M. Jung. In ihrer Forschung beschäftigt sie sich mit der zellulären Wirkung von Histon-Desacetylase-Inhibitoren. mehr

    Prof. Dr. Manfred Jung

    Manfred Jung hat an der Universität Marburg Pharmazie studiert (Approbation 1990) und wurde dort in pharmazeutischer Chemie bei W. Hanefeld promoviert. Nach einem Postdoktorat an der Universität Ottawa, Kanada begann er 1994 am Institut für Pharmazeutische Chemie der Universität Münster mit ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: