q&more
Meine Merkliste
my.chemie.de  
Login  

News

Hochdruck-Weltrekord: Forscher quetschen Osmium aus

Röntgenexperimente enthüllen sonderbares Verhalten des schwersten Metalls der Erde

Elena Bykova/University of Bayreuth

Schemazeichnung der Stempelzelle: Die Osmium-Probe (roter Punkt) misst nur drei Mikrometer und sitzt zwischen zwei Halbkugeln aus nanokristallinem Diamant.

26.08.2015: Ein internationales Forscherteam unter Leitung der Universität Bayreuth und mit Beteiligung von DESY-Wissenschaftlern hat den höchsten statischen Druck erzeugt, der jemals in einem Labor erreicht worden ist. Mit einer speziellen Diamantstempelzelle untersuchten die Forscher das Verhalten des Metalls Osmium bei Drücken von bis zu 770 Gigapascal (GPa) – das entspricht dem 7,7-millionenfachen Druck der Atmosphäre und mehr als dem doppelten Druck im Erdkern. Der neue Rekorddruck liegt 130 GPa höher als der vorige Weltrekord, der ebenfalls von Mitgliedern dieses Teams aufgestellt worden war. Überraschenderweise ändert Osmium im Gegensatz zu anderen Materialien seine Kristallstruktur nicht einmal unter solchen Rekorddrücken, allerdings zwingt der Hochdruck die inneren Elektronen zur Wechselwirkung, wie die Wissenschaftler im Fachjournal „Nature“ berichten.

Dieses grundlegende Ergebnis hat große Bedeutung für das Verständnis der Physik und Chemie in extrem komprimierter Materie, für das Design von Materialien für Extrembedingungen sowie für mathematische Modelle des Inneren von großen Planeten und Sternen.

Metallisches Osmium (Os) ist eines der ungewöhnlichsten chemischen Elemente: Es besitzt bei Normaldruck die höchste Dichte aller Elemente sowie eine der höchsten Bindungsenergien, einen der höchsten Schmelzpunkte und eine sehr geringe Kompressibilität – es lässt sich fast ebenso wenig zusammenpressen wie Diamant. Wegen seiner außergewöhnlichen Härte kommt es unter anderem in Legierungen als elektrischer Kontakt, für stark beanspruchte Maschinenteile sowie als Schreibspitze in hochwertigen Füllfederhaltern zum Einsatz.

„Hochdruck verändert normalerweise die Eigenschaften vieler Stoffe radikal: Metalle wie Natrium werden zu transparenten Isolatoren, Gase wie Sauerstoff werden dagegen fest und elektrisch leitend, manche sogar zu Supraleitern“, erläutert Prof. Natalia Dubrovinskaia von der Universität Bayreuth, gemeinsam mit Prof. Leonid Dubrovinsky Hauptautorin der Studie. „Wie bei jedem anderen Material unter sehr hohem Druck, sollte sich auch bei Osmium die Kristallstruktur ändern.“

Um dies zu untersuchen, nutzten die Wissenschaftler ein Spezialgerät für ultrahohe statische Drücke, das von den beiden Teamleitern Dubrovinsky und Dubrovinskaia in Bayreuth entwickelt worden ist. Das Spezialgerät, eine zweistufige Diamantstempelzelle, besitzt winzige Stempel aus nanokristallinem Diamant, die nur 10 bis 20 Mikrometer Durchmesser haben. Ein Mikrometer ist ein tausendstel Millimeter. Die vielen Korngrenzen der Nanokristalle machen diese Mikro-Stempel härter als Diamanten-Einkristalle: So können sie mit bis zu 770 GPa fast dem doppelten Druck standhalten.

Um die Eigenschaften von Osmium unter diesen Extrembedingungen zu untersuchen, nutzten die Forscher hochbrillante Röntgenstrahlung von DESYs Forschungslichtquelle PETRA III sowie die Europäische Synchrotronstrahlungsquelle ESRF in Frankreich und die Advanced Photon Source (APS) in den USA. Die Versuche zeigen, dass Osmium eine unerreichte strukturelle Stabilität besitzt und seine Kristallstruktur sogar unter dem Extremdruck von 770 GPa aufrechterhält.

Während die sogenannte Einheitszelle des Osmium-Kristalls mit steigendem Druck kontinuierlich schrumpft, enthüllten Detailuntersuchungen kleine Anomalien der Gitterparameter, die diese Einheitszelle definieren. In der Regel sind Änderungen von Materialeigenschaften unter Druck auf eine neue Konfiguration der äußeren (Valenz-)Elektronen zurückzuführen. Der Grund für die beobachtete Strukturanomalie bei Osmium unter Hochdruck ist jedoch eine Wechselwirkung der inneren Elektronen, wie es auch aktuelle theoretische Berechnungen nahelegen. „Unsere Arbeit zeigt, dass ultrahoher statischer Druck die inneren Elektronen zu einem Wechselspiel zwingen kann“, erläutert Dubrovinsky. „Die Möglichkeit, die inneren Elektronen selbst in solch inkompressiblen Metallen wie Osmium in Experimenten mit statischem Hochdruck zu beeinflussen, bietet spannende Perspektiven für die Suche nach neuen Zuständen der Materie.“

Die Experimente eröffnen die Möglichkeit, Materie unter den Extrembedingungen zu untersuchen, wie sie im Kern großer Planeten herrschen. „In den vergangenen 20 Jahren haben Astronomen mehr als tausend Planeten bei anderen Sternen gefunden, fast alle davon sind größer als unsere Erde”, sagt Ko-Autor Dr. Hanns-Peter Liermann, bei DESY für die Messstation P02 an PETRA III verantwortlich, wo ein Teil der Experimente stattgefunden hat. „Mit der neuentwickelten, zweistufigen Diamantstempelzelle und dem scharf fokussierten, extrem hellen Röntgenlicht von PETRA III – oder in Zukunft mit dem Europäischen Röntgenlaser European XFEL, der gerade in Hamburg gebaut wird – können wir eine Vielzahl möglicher Kompositionen von Gesteinsplaneten unter den höchsten Extrembedingungen untersuchen und viel über die Zusammensetzung und Entwicklung solcher Planeten lernen.“

Originalveröffentlichung:
The most incompressible metal osmium at static pressures above 750 GPa;L. Dubrovinsky, N. Dubrovinskaia, E. Bykova, M. Bykov, V. Prakapenka, C. Prescher, K. Glazyrin, H.-P. Liermann, M. Hanfland, M. Ekholm, Q. Feng, L. V. Pourovskii, M. I. Katsnelson, J. M. Wills, and I. A. Abrikosov; Nature (2015)

Fakten, Hintergründe, Dossiers

  • Osmium
  • Uni Bayreuth
  • Deutsches Elektrone…
  • Druck
  • Elektronen
  • Röntgenstrahlung

Mehr über Uni Bayreuth

  • News

    Kranke von gesunden Blutzellen trennen

    Bei zahlreichen Krankheiten wie Malaria oder Krebs unterscheiden sich kranke und gesunde Blut- und Körperzellen durch ihren Härtegrad. Durch einen neuen physikalischen Effekt lassen sie sich leicht voneinander trennen. Dabei sorgen Strömungen in Mikrokanälen dafür, dass sich von selbst härt ... mehr

    Neues Verfahren zur Klonierung

    Die DNA, welche die Erbinformationen eines Organismus enthält, besteht aus einer langen Reihe von Nukleotiden. Um die in der Abfolge dieser Bausteine begründeten Funktionen untersuchen zu können, müssen DNA-Fragmente in Trägermoleküle eingesetzt und vervielfältigt werden. Für diesen Vorgang ... mehr

    Chaos hält warm: Wärmeisolation durch gezielte Unordnung erhöht

    Pulver eignen sich hervorragend für die Wärmedämmung, wenn darin ein Durcheinander von unterschiedlich großen Nanopartikeln herrscht. Dies hat eine Forschungsgruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth jetzt herausgefunden. Die Wissenschaftler haben entdeckt, wie die Wärm ... mehr

  • q&more Artikel

    Authentische Lebensmittel

    Authentische Lebensmittel erfreuen sich bei Konsumenten zunehmender Beliebtheit. Ein regionales, sortenreines und/oder speziell hergestelltes Produkt ist in einem stark industrialisierten Markt in steigendem Maß ein Garant für mehr Wertschöpfung. Gerade im Premiumsegment lassen sich durch ö ... mehr

    Mehr als Honig?

    Seit Jahrtausenden ist „Honig“ ein Inbegriff für ein naturbelassenes und gesundes Lebensmittel. Dementsprechend erfreut sich Honig auch bei Konsumenten steter Beliebtheit – gerade in Zeiten, in denen biologische Lebensmittel und eine gesunde Lebensweise aktueller sind als je zuvor. mehr

    Extraportion Zink

    Mächtige Unterarme, Pfeife im Mund, Matrosenhut. In Sekundenschnelle ist die Dose Spinat geöffnet und ­geleert. Mit nun übermenschlicher Kraft geht es in die nächste Rauferei. So kennen wir Popeye, den Seemann. Das Geheimnis seiner Stärke ist der hohe Eisengehalt von Spinat. Mit dieser Vors ... mehr

  • Autoren

    Dr. Christopher Igel

    Jg. 1990, absolvierte von 2009 bis 2013 sein Bachelor-Studium in Biochemie an der Universität Bayreuth. Die Bachelorarbeit zum Thema „Honiganalytik mittels NMR“ fertigte er am Forschungszentrum BIOmac unter der Leitung von Prof. Dr. Schwarzinger an. mehr

    Wolfrat Bachert

    Jg. 1987, begann zunächst ein Studium des Maschinen­baustudium an der TU Dresden, eher er 2009 zum Studium der Biologie an die ­Universität Bayreuth wechselte, wo er 2013 am Lehrstuhl für Biochemie unter der Leitung von Prof. Dr. Wulf Blankenfeldt seine Bachelorarbeit zum Thema „Charakteri­ ... mehr

    Christopher Synatschke

    Christopher Synatschke hat an der Universität Bayreuth und der University of New South Wales, Sydney Chemie mit Schwerpunkt Polymerforschung studiert und ist seit 2009 Doktorand in der Arbeitsgruppe von Prof. Axel H. E. Müller an der Universität Bayreuth. Seine Forschungsinteressen sind die ... mehr

Mehr über Deutsches Elektronen-Synchrotron DESY

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.