14.08.2015 - Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Flippiger Lipid-Transport

Einem Team von Forschern der ETH Zürich und der Universität Bern ist es gelungen, die Struktur eines speziellen Transport-Enzyms, einer Flippase des Bakteriums Campylobacter jejuni, aufzuklären. Die Struktur lieferte ihnen darüber hinaus eine Erklärung dafür, wie Flippasen bestimmte Lipide auf den Kopf stellen können.

Membranen spielen in der Biologie eine überaus wichtige Rolle, gebildet werden Membranen in der Regel durch eine Doppelschicht von Lipiden. Lipide haben einen hydrophilen Kopf, an welchen zwei lange, hydrophobe Kohlenwasserstoffketten gebunden sind. Bei einer Doppellipidschicht liegen die hydrophilen Köpfe der Lipide außen, die hydrophoben Ketten sind einander zugewandt. In die Membran eingebettet sind zahlreiche weitere Bestandteile wie Porenbildende Proteine oder Transport-Enzyme.

Lipid-Transport essenziell

Der Transport von Phospholipiden sowie von Lipid-gebundenen Oligosacchariden (Lipid-linked Oligosaccharide, LLO) ist aufgrund der bipolaren Natur der Doppelmembran  energieabhängig und nur schwierig zu bewerkstelligen. Hier kommen sogenannte Flippasen zum Einsatz. Das sind Transportproteine, die über einen besonderen Flipp-Mechanismus Lipide von der einen auf die andere Seite der Membran bringen. Flippasen haben eine wichtige Rolle beim Aufrechterhalten der Asymmetrie von zellulären Membranen, also in der unterschiedlichen Lipid-Zusammensetzung der Innen- und Aussenseite.

Die asymmetrische Verteilung von Lipiden beeinflusst bei Säugetieren etwa die Blutgerinnung, die Immunerkennung oder den programmierten Zelltod, die Apoptose. Wissenschaftler vermuten, dass eine aus den Fugen geratene Lipid-Asymmetrie mit neurodegenerativen Krankheiten wie dem Alzheimer-Syndrom in Verbindung stehen könnte. Zudem spielen Flippasen eine essentielle Rolle im Transport von Lipid-gebundenen Oligosacchariden, die bei der Glykosylierung auf Proteine übertragen werden.

Flippase-Struktur erstmals aufgeklärt

Bislang kannten Biologen weder die genaue Struktur von Flippasen noch deren Mechanismus, wie sie die LLO umorientieren. Nun zeigt eine Forschungsgruppe von Wissenschaftlern der ETH Zürich und der Universität Bern, unter der Leitung von ETH-Professor Kaspar Locher, wie eine dieser Flippasen, die bakterielle «PglK», aufgebaut ist und wie sie funktioniert. PglK sitzt in der Membran des Bakteriums Campylobacter jejuni, einem Krankheitserreger des Menschen.

Um die molekulare Struktur von PglK zu bestimmten, isolierten die Forschenden diese Flippase aus Bakterienmembranen und «froren» die gefundenen Moleküle ein, indem sie diese kristallisierten. Die Kristalle wurden danach mittels Röntgenspektroskopie untersucht und die Positionen der Atome, aus welchen die Flippase besteht, mit hoher Auflösung bestimmt. So erhielten die Wissenschaftlerinnen und Wissenschaftler von drei verschiedenen Stadien dieses beweglichen Moleküls die räumliche Anordnung. Die Kenntnis der Stadien ermöglichte es ihnen schließlich auch, einen molekularen Mechanismus abzuleiten, wie PglK LLOs umlagert.

So zeigen die Forschenden in ihrer Arbeit, dass PglK aus zwei identischen Untereinheiten besteht, die sich unter Energiezufuhr wie eine Schere bewegen. Der hydrophile Zuckerteil des Lipid-gebundenen Oligosaccharids wird dann wie einem Kreditkartenlesegerät durch einen ebenfalls hydrophilen Kanal von PglK gezogen. Der hydrophobe Lipid-Teil des Moleküls hingegen bleibt im hydrophoben Teil der Membran stecken. Dadurch ändert das LLO insgesamt seine Orientierung, der Zuckerteil kommt auf die Membranaussenseite zu liegen. Die Flippase ändert ihre Konformation während der Translokation des Oligosaccharids nicht. Erst wenn das LLO die Flippase verlassen hat, kehrt diese in den Ursprungszustand zurück.

Flippase-Mechanismus verstehen

Der nun gefundene Mechanismus unterscheidet sich grundlegend von bisher erforschten Transportprozessen, die über vergleichbare Transportkomplexe in Membranen ablaufen. «Das Flippen von Lipiden in Membranen hat Biochemiker und Zellbiologen seit jeher fasziniert; die biologische Lösung dieses Problems hat uns begeistert!» sagt Ko-Autor Markus Aebi, Professor für Mikrobiologie an der ETH Zürich.

Die Forschungsgruppen von ETH Zürich und Universität Bern sind die ersten, die dieses fundamentale biologische Rätsel, wie LLO geflippt wird, nun lösen konnten. Dazu haben sie ein neuartiges In-vitro-Modell entwickelt. ETH-Professor Aebi betont, dass es nur durch die Zusammenarbeit von Strukturbiologen, Chemikern und Mikrobiologen gelungen ist, diesen grundlegenden Mechanismus zu entschlüsseln.

Nutzen für Therapeutika?

Die Arbeit sei reine Grundlagenforschung, obwohl es Erkrankungen gibt, die auf Mutationen in einer menschlichen Flippase zurückzuführen seien, so Aebi weiter. Diese Krankheiten gehören zur Klasse der «Congenital Disorders of Glycosylation». Beim Menschen sind über 10‘000 Glykosylierungsstellen in verschiedensten Proteinen bekannt.

Fakten, Hintergründe, Dossiers

  • Universität Bern
  • ETH Zürich
  • Campylobacter jejuni
  • Biomembranen
  • Flippasen

Mehr über ETH Zürich

  • News

    Die Gehirnentwicklung kartieren

    ETH-​Forschende züchten aus Stammzellen menschliches gehirnähnliches Gewebe und kartieren die Zelltypen, die in verschiedenen Hirnregionen vorkommen, sowie die Gene, die deren Entwicklung regulieren. Das hilft bei der Erforschung von Entwicklungsstörungen oder Nervenerkrankungen. Das mensch ... mehr

    Genaktivitäten in lebenden Zellen messen

    Forschende der ETH Zürich und der EPFL erweitern das aufstrebende Feld der Einzel-​Zell-Analysen um eine wegweisende Methode: Live-​seq erlaubt es, die Aktivität von Tausenden von Genen einer einzelnen Zelle zu messen, ohne sie isolieren und zerstören zu müssen. Die moderne Biologie will zu ... mehr

    Hydrogel hält Impfstoffe am Leben

    Viele Impfstoffe müssen während des Transports ständig gekühlt werden, damit sie wirksam bleiben. Ein internationales Forschungsteam unter Federführung der ETH Zürich hat nun ein spezielles Hydrogel entwickelt, das die Haltbarkeit von Impfstoffen auch ohne Kühlung massiv verbessert. Die Erf ... mehr

  • q&more Artikel

    Analytik in Picoliter-Volumina

    Zeit, Kosten und personellen Aufwand senken – viele grundlegende sowie angewandte analytische und diagnostische Herausforderungen können mit Lab-on-a-Chip-Systemen realisiert werden. Sie erlauben die Verringerung von Probenmengen, die Automatisierung und Parallelisierung von Arbeitsschritte ... mehr

    Investition für die Zukunft

    Dies ist das ganz besondere Anliegen und gleichzeitig der Anspruch von Frau Dr. Irmgard Werner, die als Dozentin an der ETH Zürich jährlich rund 65 Pharmaziestudenten im 5. Semester im Praktikum „pharmazeutische Analytik“ betreut. Mit Freude und Begeisterung für ihr Fach stellt sie sich imm ... mehr

  • Autoren

    Prof. Dr. Petra S. Dittrich

    Jg. 1974, ist Außerordentliche Professorin am Department Biosysteme der ETH Zürich. Sie studierte Chemie an der Universität Bielefeld und Universidad de Salamanca (Spanien). Nach der Promotion am Max-Planck-Institut für biophysikalische Chemie in Göttingen war sie Postdoktorandin am ISAS In ... mehr

    Dr. Felix Kurth

    Jg. 1982, studierte Bioingenieurwesen an der Technischen Universität Dortmund und an der Königlich Technischen Hochschule in Stockholm. Für seine Promotion, die er 2015 von der Eidgenössisch Technischen Hochschule in Zürich erlangte, entwickelte er Lab-on-a-Chip Systeme und Methoden zur Qua ... mehr

    Lucas Armbrecht

    Jg. 1989, studierte Mikrosystemtechnik an der Albert-Ludwigs Universität in Freiburg im Breisgau. Während seines Masterstudiums konzentrierte er sich auf die Bereiche Sensorik und Lab-on-a-Chip. Seit dem Juni 2015 forscht er in der Arbeitsgruppe für Bioanalytik im Bereich Einzelzellanalytik ... mehr

Mehr über Universität Bern

  • News

    Mit Metallen gegen Pilzinfektionen

    Eine internationale Kollaboration unter der Leitung von Forschenden der Universität Bern und der University of Queensland in Australien hat gezeigt, dass chemische Verbindungen mit speziellen Metallen hocheffektiv gegen gefährliche Pilzinfektionen sind. Mit diesen Ergebnissen könnten innova ... mehr

    Sars-CoV-2-Mutanten im Wettlauf

    Wie gefährlich sind neue Mutationen des Sars-CoV-2-Virus? Ein internationales Team mit Beteiligung des Instituts für Virologie und Immunologie (IVI) des Bundesamts für Lebensmittelsicherheit und Veterinärwesen BLV und der Universität Bern, der Centers for Disease Control and Prevention (USA ... mehr

    Forscher bauen hochentwickelte «Lunge auf Chip»

    Forschende der Universität Bern und des Inselspitals, Universitätsspital Bern haben ein Lungen-Modell der zweiten Generation mit lebensgrossen Lungenbläschen in einer rein biologischen, dehnbaren Membran entwickelt. Das neue Modell bildet das Lungengewebe viel lebensnäher nach als bisherige ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: