q&more
Meine Merkliste
my.chemie.de  
Login  

News

Metallmäntel optimieren chemische Reaktionen

© Fraunhofer IKTS

Schüttgut ist Massenware in der chemischen Industrie. Das Fraunhofer IKTS schützt die millimetergroßen Partikel jetzt mit einem Metallmantel. Das erhöht ihre Wärmeleitfähigkeit um das Fünffache.

02.07.2015: Für die chemische Industrie sind sie Massenware: Aufgeschüttete Füllkörper, die als Katalysator oder Adsorptionsmittel in Reaktoren und Wärmespeichern eingesetzt werden. Fraunhofer-Forscher entwickelten einen Metallmantel für die einzelnen Füllkörper, der ihre Wärmeleitfähigkeit um das Fünffache erhöht.

Viele chemische Reaktionen und Wärmespeicher nutzen aufgeschüttete Füllkörper als Katalysator oder Adsorptionsmittel. Die Industrie setzt mehrere Millionen Tonnen dieser Funktionsmaterialien im Jahr ein, um ihre Grundstoffe herzustellen. Damit die Reaktionen wie gewünscht ablaufen, müssen die Füllkörper besonders wärmeleitfähig sein. Das Problem: Zwischen den nur wenigen Millimeter großen Körpern lässt sich die Wärme nicht optimal weiterleiten. Die Chemieunternehmen müssen daher zusätzliche wärmeleitende Strukturen in ihre Reaktoren einbauen. »Das ist aufwändig und teuer«, sagt Jörg Adler, Forscher am Fraunhofer-Institut für Keramische Technologien und Systeme IKTS in Dresden. Zusammen mit Kollegen der Fraunhofer-Institute für Werkzeugmaschinen und Umformtechnik IWU in Chemnitz und für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart entwickelte Adler ein Konzept, das die Wärmeleitfähigkeit der aufgeschütteten Materialien um das Fünffache erhöht. Dafür haben die Wissenschaftler zylinderförmige Füllkörper mit Metall ummantelt: Die Metallhüllen der einzelnen Körper berühren sich und bilden so ein metallisches Gerüst über die gesamte Schüttung aus, in dem sich Wärme schneller und effizienter ausbreiten kann.

Wirkungsgrad um das Fünffache erhöht

Den Effizienzsprung haben die Wissenschaftler im Labor mit einer acht Liter großen Schüttung aus Aluminium-ummantelten Zeolith-Füllkörpern bei einem Wärmespeicher nachgewiesen. Adler beschreibt die Vorteile: »Die Schüttung ist schneller gleichmäßig warm. Das Entladen und Beladen des Wärmespeichers geht deutlich schneller. Bei chemischen Reaktionen würde sich die Effizienz und damit die Produktgüte erhöhen.« Die Forscher gehen davon aus, dass der Effekt mit einem Metall, das noch besser Wärme leitet – zum Beispiel Kupfer, weiter ausgebaut werden kann. Die Schüttkörper aus dem Labor haben eine Länge von fünf Millimetern. Die sie ummantelnde Aluminiumschicht ist 0,25 Millimeter dick. Die Wissenschaftler stellen sie in einem eigens dafür entwickelten massentauglichen Verfahren her: Sie füllen lange Metallrohre mit dem Schüttmaterial, verdichten es, damit es nicht herausrutscht und zerschneiden die Rohre dann zu einzelnen, wenige Millimeter langen Zylindern.

»Die chemische Industrie nutzt Schüttkörper in großen Mengen und über längere Zeit hinweg. Idealerweise verbleiben sie mehrere Jahre in den Reaktoren. Ein Problem bei Transport und Anwendung ist pulverförmiger Abrieb: Dieser entsteht durch die Bewegungen der Schüttkörper gegeneinander. Die Metallhülle schützt die Schüttkörper vor Abrieb und erhöht so ihre Lebensdauer«, so Adler.

Mit Wasser getränkte Schüttkörper aus Zeolith trocknen bei Wärmezufuhr und nehmen die Wärme auf. Befeuchtet man sie, geben sie diese wieder ab. Dieser physikalische Effekt qualifiziert sie auch für den Einsatz in Wärmespeichern. »Die Effizienz dieses Prozesses hängt ebenfalls von der Wärmeleitfähigkeit des Zeolith ab. Oft müssen sehr aufwändige Wärmetauscher-Konstruktionen installiert werden, die teuer sind und dem eigentlichen Wärmespeicher Volumen wegnehmen. Hier können die Metall-ummantelten Füllkörper Mehrwert schaffen. Im Labor haben wir die Zyklenzeit des Wärmespeichers deutlich verkürzt«, sagt Adler.

Machbarkeit und Funktion der Ummantelung konnten im Labor gezeigt werden. Jetzt wollen die Forscher die nächsten Schritte Richtung industrielle Anwendung gehen. »Wir müssen Material und Herstellung noch weiter optimieren und nachweisen, in welchem Ausmaß genau der Nutzen der höheren Wärmeleitfähigkeit die zusätzlichen Kosten der Metall-Ummantelung übersteigt«, so Adler.

Aufgeschüttete Füllkörper aus Katalysatorstoffen oder Adsorptionsmitteln (Sorbentien) sind Massenware in der chemischen Industrie. Katalysatoren fördern chemische Reaktionen ohne dabei selbst aufgebraucht zu werden. Sorbentien nehmen bestimmte Produkte auf und speichern sie in sich. Die Füllkörper kommen beispielsweise zum Einsatz, um chemische Reaktionen zu optimieren oder sind Bestandteil von modernen Wärmespeichern. Dabei wird das Material in einem Reaktor mit einer Flüssigkeit oder einem Gas durchströmt, die an der Oberfläche der winzigen Körper eine chemische Reaktion auslösen.

Fakten, Hintergründe, Dossiers

Mehr über Fraunhofer-Institut IKTS

Mehr über Fraunhofer-Institut IGB

  • News

    Eine echte Alternative zum Erdöl

    Ein Forschungsteam der Fraunhofer-Gesellschaft und der Technischen Universität München (TUM) unter Leitung des Chemikers Volker Sieber hat eine neue Polyamid-Familie entwickelt, die sich aus einem Nebenprodukt der Zelluloseproduktion herstellen lässt – ein gelungenes Beispiel für nachhaltig ... mehr

    Impfstoffe chemikalienfrei produzieren

    Impfstoffe herzustellen ist ein schwieriges Unterfangen: Bei den Tot-Impfstoffen müssen die Krankheitserreger abgetötet werden, ohne deren Struktur zu verändern. Bislang geschieht dies meist mit giftigen Chemikalien. Eine neuartige Technologie von Fraunhofer-Forschern nutzt stattdessen Elek ... mehr

    Sprühtrocknung: Wirkstoffe passgenau verkapseln

    Instant-Kaffee oder Milchpulver werden mittels Sprühtrocknung hergestellt. Fraunhofer-Forscher haben das Verfahren jetzt so angewandt, dass sich auch unlösliche Komponenten problemlos zu Kern-Schale-Partikeln verarbeiten lassen. Die neue Methode hilft dabei, Wirkstoffkonzentrationen bei med ... mehr

  • q&more Artikel

    3D-Gewebemodelle mit Immunkompetenz

    Die angeborene Immunität ist ein zentraler Bestandteil der menschlichen Immunabwehr. Mustererkennungsrezeptoren (Pattern Recognition Receptors, PRR), wie die Toll-like-Rezeptoren (TLR) spielen in diesem System eine Schlüsselrolle. mehr

  • Autoren

    Dr. Anke Burger-Kentischer

    Anke Burger-Kentischer promovierte an der Universität Tübingen über „Zelluläre und molekulare Mechanismen der strahleninduzierten Lungenfibrose“. Während ihres Postdoc-Aufenthaltes am Institut für Physiologie der Ludwig-Maximilians-Universität München beschäftigte sie sich mit dem zellspezi ... mehr

    Dr. Kai Sohn

    Kai Sohn, Jahrgang 1968, studierte Biologie an der Universität Heidelberg und schloss sein Studium als Diplombiologe ab. Er promovierte 1997 am Biochemiezentrum der Universität Heidelberg. Ab 1998 arbeitete Dr. Sohn an der Universität Stuttgart als Postdoc im Bereich medizinisch relevanter ... mehr

    Prof. Dr. Steffen Rupp

    Steffen Rupp, geboren 1962, studierte Chemie an den Universitäten Stuttgart, Freiburg und Cincinnati, OH, USA. Er promovierte 1994 am Institut für Biochemie der Universität Stuttgart mit Auszeichnung. Von 1995-1998 arbeitete er im Rahmen seines DFG-Forschungsstipendiums am Whitehead Institu ... mehr

Mehr über Fraunhofer-Gesellschaft

  • News

    Fraunhofer stellt High-Speed-Mikroskop mit intuitiver Gestensteuerung vor

    Zur Qualitätskontrolle großflächiger Objekte aus der Halbleiter- und Elektronikindustrie oder zur schnellen Überprüfung biologischer Proben hat das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen ein High-Speed-Mikroskop entwickelt, das Proben mit bis zu 500 Bildern pro Sekund ... mehr

    Food-Scanner für die Hosentasche

    Laut einer Studie der Umweltstiftung WWF Deutschland landen jährlich zehn Millionen Tonnen Lebensmittel in Deutschland im Müll, obwohl sie noch verzehrbar sind. Mit einem mobilen Food-Scanner sollen Verbraucher und Supermarktbetreiber in Zukunft prüfen können, ob Nahrungsmittel verdorben si ... mehr

    Impfstoffe chemikalienfrei produzieren

    Impfstoffe herzustellen ist ein schwieriges Unterfangen: Bei den Tot-Impfstoffen müssen die Krankheitserreger abgetötet werden, ohne deren Struktur zu verändern. Bislang geschieht dies meist mit giftigen Chemikalien. Eine neuartige Technologie von Fraunhofer-Forschern nutzt stattdessen Elek ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.