24.06.2015 - DWI - Leibniz-Institut für Interaktive Materialien e.V.

Perlmutt, aufgemotzt

Wasserstoffbrücken in der Polymerphase geben neuen Impuls für synthetisches Perlmutt

Perlmutt hat hochinteressante optische und mechanische Eigenschaften, ist aber für die industrielle Herstellung von Materialien ungeeignet. Nanokomposite mit Perlmuttstruktur kann man herstellen, aber es ist sehr schwierig, die gewünschten Eigenschaften einzustellen. Wissenschaftler in Aachen stellen in der Zeitschrift Angewandte Chemie synthetische Nanokomposite vor, die wie Perlmutt aus angeordneten Nanoplättchen mit umgebender weicher Polymerphase bestehen, aber durch zusätzliche eingebaute Wasserstoffbrückenbindungen zwischen den Polymermolekülen ungeahnte Fähigkeiten einschließlich der Möglichkeit zur Selbstheilung erhalten.

Natürliches Perlmutt hat eine hochgeordnete Struktur aus Nanoplättchen, die in einer Matrix aus verschiedenen Biopolymeren eingebettet sind. Die regelmäßige Anordnung der Lagen sorgt für das typische, seit jeher für Schmuckzwecke genutzte Schimmern und ebenfalls für gute mechanische Eigenschaften, die aber noch keine größere technische Anwendung finden. Andreas Walther und sein Team am DWI - Leibniz-Institut für Interaktive Materialien, in Kooperation mit dem KIT in Karlsruhe, entwickeln Nanokomposite mit Perlmuttstruktur, deren laminierende Polymerphase aus einem Polymer mit niedrigem Molekulargewicht und geringer Glasübergangstemperatur besteht. Durch molekulares Engineering polymerisieren sie ein zusätzliches supramolekulares Bindungsmotiv ein. Kombiniert mit synthetischen Schichtsilikaten kann dieses Material durch Selbstassemblierung einen hochtransparenten, steifen, aber auch sehr bruchfesten Film ausbilden.

Das Motiv der supramolekularen Bindungen besteht aus einer Ureidopyrimidinon-Einheit (UPy). Diese Motive bilden, ähnlich wie die Nukleobasen in der DNA, über Wasserstoffbrückenbindungen Dimere und erhöhen somit durch die Verbrückung verschiedener Polymermoleküle die Festigkeit des Verbunds. "Durch die Art und Anzahl der Wasserstoffbrücken können wir erstmals festlegen, wie der Übergang zwischen elastischer und plastischer Deformation abläuft", erklärt Walther, Korrespondenzautor der Studie. "Anders als bei den kovalenten Bindungen stabilisieren die supramolekularen Bindungen zunächst gegen Deformation (verbessern die Steifigkeit), aber ab einer bestimmten Spannung können die Bindungen aufgehen und die Bruchenergie durch eine Haft-Rutschbewegung sowie durch Gleiten der Plättchen gegeneinander ableiten".

Durch diese "Opferung" von Bindungen ist es möglich, die Eigenschaften des Materials sowohl auf Nano-, Mikro- als auch Makroebene genau einzustellen. Je nach Anteil des UPy-Motivs und somit supramolekularer Vernetzung der Polymere ist das Material entweder sehr steif und fest, oder es ist gleichzeitig steif und sehr zäh, was mit herkömmlichen Methoden nicht einfach erreicht werden kann, wie die Autoren betonen. So zeigte der Nanokompositfilm bei 13% Upy-Anteil ein Bruchverhalten, "das klar an das von hoch verstärkten biologischen Materialien erinnert", schreiben die Autoren. Weil die Filme außerdem dicht gegenüber Gasen sind, eröffnen sich zahlreiche neue und interessante Anwendungsmöglichkeiten für die Perlmutt-Mimetika. Walther ist überzeugt: "Die Materialen sind nicht nur als mechanisch robuste Nanokomposite interessant, sondern können wegen ihrer multifunktionalen Eigenschaften auch anderweitig eingesetzt werden wie als volltransparente Sauerstoffbarriere zur Verkapselung von organischer Elektronik oder als halogen- und schwermetallfreier Flammschutz".

Fakten, Hintergründe, Dossiers

Mehr über Leibniz-Institut für Interaktive Materialien

  • News

    Mikro-Lieferservice für Dünger

    Pflanzen können Dünger nicht nur über die Wurzeln, sondern auch über die Blätter aufnehmen. Über einen längeren Zeitraum gestaltet sich eine Blattdüngung jedoch schwierig. Deutsche Forscher stellen jetzt in der Zeitschrift Angewandte Chemie ein leistungsfähiges Zufuhrsystem für Mikronährsto ... mehr

    Wasserabweisende Membran mit Nano-Kanälen für hocheffiziente Energiespeicherung

    Energiespeicherung und eine stabile Stromversorgung sind ein zentrales Thema, wenn es um die Nutzung von Energie aus Solar- und Windkraftanlagen geht. Hier unterliegt der Energiegewinn natürlichen Schwankungen, die durch effiziente Speichermethoden ausgeglichen werden müssen. Wissenschaftle ... mehr

    Wissenschaftler programmieren Lebensdauer von Nanostrukturen

    Materialien, die sich eigenständig bilden und sich nach getaner Arbeit ohne weiteres Zutun auflösen, könnten vielseitigen Einsatz finden – als temporäre Datenspeicher oder medizintechnische Werkstoffe. Sie könnten etwa den Blutfluss einer Vene für die Dauer einer Operation unterbrechen und ... mehr

Mehr über KIT

  • News

    Maschinelles Lernen beschleunigt Materialsimulationen

    Erforschung, Entwicklung und Herstellung neuer Materialien hängen entscheidend von schnellen und zugleich genauen Simulationsmethoden ab. Maschinelles Lernen, bei dem Künstliche Intelligenz (KI) selbstständig neues Wissen erwirbt und anwendet, wird es künftig ermöglichen, komplexe Materials ... mehr

    Katalysatorforschung: Molekulare Sonden erfordern hochgenaue Rechnungen

    Katalysatoren machen viele Technologien überhaupt erst möglich. Um heterogene Katalysatoren weiter zu verbessern, bedarf es der Analyse der komplexen Prozesse an ihrer Oberfläche, wo sich die aktiven Zentren befinden. Forschende des Karlsruher Instituts für Technologie (KIT) haben mit Kolle ... mehr

    Nanostrukturen helfen, die Haftung von Krankenhauskeimen zu reduzieren

    Wissenschaftler der Universität des Saarlandes und des Karlsruher Instituts für Technologie haben gemeinsam herausgefunden, wie Bakterien auf – in mikroskopischen Maßstäben – rauen Oberflächen haften. Das Team aus den Disziplinen Physik, Mikrobiologie und Mathematik entdeckte, dass aus der ... mehr

  • q&more Artikel

    Analytische Quantifizierung von Gluten in Lebensmitteln

    Der Gesetzgebung zufolge dürfen Lebensmittel, die mit einem Glutenfrei-Symbol versehen sind, nicht mehr als 20 mg Gluten pro Kilogramm enthalten, was für Zöliakie-Betroffene aus gesundheitlichen Gründen lebenswichtig ist. mehr

    Bewertung der Lungentoxizität von Luftschadstoffen

    Die aktuellen Diskussionen zu Fahrverboten in europäischen Städten zeigen einerseits den hohen Stellenwert, den die Bevölkerung der Luftqualität zumisst, und andererseits den Mangel an Methoden, die von Luftschadstoffen ausgehende Beeinträchtigung der menschlichen Gesundheit direkt zu bewerten. mehr

    Biochemie in der Mikrowelle

    Die Entwicklung neuer Pharmazeutika beruht auf dem zunehmenden Verständnis intrazellulärer Vorgänge. Insbesondere durch die Erforschung von Ligand-Rezeptor-Wechselwirkungen können Wirkstoffe ­besser angepasst werden. Um Medikamente an ihren Wirkungsort ­zu bringen, werden sog. „Carrier“-Mol ... mehr

  • Autoren

    Prof. Dr. Katharina Scherf

    Katharina Scherf, Jahrgang 1985, studierte Lebensmittelchemie an der Technischen Universität München (TUM). Ihre Promotion und Habilitation erwarb sie ebenfalls an der TUM und war als leitende Wissenschaftlerin am Leibniz-Institut für Lebensmittel-Systembiologie an der TUM tätig. 2019 wurde ... mehr

    Majlinda Xhaferaj

    Majlinda Xhaferaj, Jahrgang 1992, schloss ihr Lebensmittelchemiestudium im Jahr 2018 am Karlsruher Institut für Technologie (KIT) ab. Seit 2019 ist sie Doktorandin in der Abteilung für Bioaktive und Funktionelle Lebensmittelinhaltsstoffe mit dem Schwerpunkt der Glutenanalytik zur Verbesseru ... mehr

    Dipl. Ing. Sonja Mülhopt

    Sonja Mülhopt erwarb 2000 ihr Diplom für Maschinenbau an der Berufsakademie (heute DHBW) Mannheim. Die begleitende Ausbildung durchlief sie am Forschungszentrum Karlsruhe, dem heutigen Karlsruher Institut für Technologie (KIT). 2014 erhielt sie den Master of Science für Chemieingenieurwesen ... mehr

Mehr über Angewandte Chemie

  • News

    Herumgereichte Elektronen

    Durch Licht ausgelöste Ladungsübertragungen (Charge-Transfer) sind eine interessante elektronische Eigenschaft von Berliner Blau und einigen analog aufgebauten Verbindungen. Ein Forschungsteam konnte jetzt die ultraschnellen Prozesse bei der lichtinduzierten Ladungsübertragung zwischen Eise ... mehr

    Kristalle passend gemacht

    Das Substrat passt in sein Enzym wie ein Schlüssel ins Schlüsselloch – diese Veranschaulichung hinkt etwas. Denn die Bindung des Substrats kann auch das „Schlüsselloch“ (die Struktur des Enzyms) so verändern, dass es perfekt passt (Induced Fit). Ein internationales Forschungsteam stellt in ... mehr

    Schaltbare IR-aktive organische Pigmente

    In der Photosynthese und der organischen Photovoltaik wandeln Pigmente Licht in elektrische Ladung um. Wissenschaftler haben nun ein ungewöhnliches organisches Pigment hergestellt, das sich durch elektrische Ladung „anschalten“ und dann zu einem intensiven Farbstoff wird, der Licht im Nahin ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: