22.06.2015 - Karlsruher Institut für Technologie (KIT)

Erste Solarzelle aus hochgeordneten Molekülgerüsten

Neuartiges Material auf Basis von metall-organischen Gerüstverbindungen (MOF) eignet sich für Photovoltaik

Forscher am KIT haben ein neuartiges Material entwickelt, das sich für die Photovoltaik eignet. Erstmals wurde auf der Basis von metall-organischen Gerüstverbindungen (MOF) eine funktionsfähige, aus einer einzelnen Komponente bestehende organische Solarzelle hergestellt. Das Material ist hoch-elastisch und könnte auch als flexible Beschichtung von Kleidung und verformbaren Bauteilen genutzt werden. Die Fachzeitschrift Angewandte Chemie widmet diesem Erfolg ihre Titelseite.

„Wir haben die Tür zu einem neuen Raum geöffnet“, sagt Professor Christof Wöll, Direktor des Instituts für Funktionelle Grenzflächen (IFG) am KIT. „Diese neu erschlossene Anwendung von metall-organischen Gerüstverbindungen ist erst der Anfang, das Ende dieser Entwicklung wird noch lange nicht erreicht sein“, betont der Physiker.

Metallorganische Verbindungen – Metal-Organic Frameworks, kurz MOFs - bestehen aus zwei Grundelementen, metallischen Knotenpunkten und organischen Molekülen, die wie Bausteine zu mikroporösen, kristallinen Materialien zusammengesetzt werden. Die MOFs genießen seit gut einem Jahrzehnt besonderes Forschungsinteresse, weil sich ihre Funktionalität durch Variation der Bausteine anpassen lässt. „So ist es möglich eine Vielzahl von Eigenschaften des Materials zu ändern“, erläutert Wöll. Es wurden bereits mehr als 20.000 verschiedene MOF-Typen entwickelt, meist eingesetzt für die Speicherung oder Trennung von Gasen.

Die Wissenschaftlergruppe unter Federführung des KIT hat jetzt MOFs hergestellt, bei denen Porphyrine als Baustein eingesetzt werden. Diese porphyrin-basierten MOFs haben hochinteressante photophysikalische Eigenschaften: Neben einer hohen Effizienz in der Erzeugung von Ladungsträgern wird eine hohe Ladungsträger-Beweglichkeit beobachtet. Rechnungen, die von der am Projekt beteiligten Gruppe um Professor Thomas Heine von der Jacobs University Bremen durchgeführt wurden, legen es nahe, dass die sehr guten Eigenschaften der Solarzelle auf einem zusätzlichen Mechanismus – der Ausbildung indirekter Bandlücken – basieren, der für die Photovoltaik eine wichtige Rolle spielt. Die Natur setzt Porphyrine als Universal-Moleküle ein, unter anderem im Blutfarbstoff sowie im Chlorophyll, wo diese organischen Farbstoffe Licht in chemische Energie umwandeln. Eine mit dem neuartigen Porphyrin-MOF hergestellte, metall-organische Solarzelle stellen Forscher nun in der Fachzeitschrift Angewandte Chemie vor. Der Beitrag trägt den Titel `Photoinduzierte Erzeugung von Ladungsträgern in epitaktischen MOF-Dünnschichten: hohe Leistung aufgrund einer indirekten elektronischen Bandlücke?´

„Wir kommen in der Solarzelle mit nur einem einzigen organischen Molekül aus, das ist der Clou“, betont Wöll. Die Forscher erwarten, die photovoltaische Leistung des Materials künftig erheblich steigern zu können, indem sie die Poren innerhalb der kristallinen Gitterstruktur mit Molekülen füllen, die elektrische Ladungen abgeben und aufnehmen können.

Durch ein am KIT entwickeltes Verfahren wachsen die kristallinen Gerüste lagenweise auf einer transparenten, leitfähigen Trägeroberfläche auf und bilden eine homogene Dünnschicht, sogenannte SURMOFs. „Das SURMOF-Verfahren eignet sich prinzipiell für einen kontinuierlichen Herstellungsprozess und erlaubt prinzipiell auch die Beschichtung größerer Kunststoff-Trägerflächen“, so Wöll. Durch ihre mechanischen Eigenschaften ließen sich die nur wenige 100 Nanometer dicken MOF-Dünnschichten für flexible Solarzellen nutzen, etwa zum Beschichten von Kleiderstoffen oder sich verformenden Bauteilen.

Angesichts der steigenden Nachfrage nach technischen Systemen, die Sonnenlicht in elektrische Energie umwandeln, bieten organische Materialien eine hochinteressante Alternative zu Silizium, das kostenintensiv aufbereitet werden muss, um für die photoaktive Schicht einer Solarzelle verwendet zu werden.

Fakten, Hintergründe, Dossiers

  • Porphyrine

Mehr über KIT

  • News

    Maschinelles Lernen beschleunigt Materialsimulationen

    Erforschung, Entwicklung und Herstellung neuer Materialien hängen entscheidend von schnellen und zugleich genauen Simulationsmethoden ab. Maschinelles Lernen, bei dem Künstliche Intelligenz (KI) selbstständig neues Wissen erwirbt und anwendet, wird es künftig ermöglichen, komplexe Materials ... mehr

    Katalysatorforschung: Molekulare Sonden erfordern hochgenaue Rechnungen

    Katalysatoren machen viele Technologien überhaupt erst möglich. Um heterogene Katalysatoren weiter zu verbessern, bedarf es der Analyse der komplexen Prozesse an ihrer Oberfläche, wo sich die aktiven Zentren befinden. Forschende des Karlsruher Instituts für Technologie (KIT) haben mit Kolle ... mehr

    Nanostrukturen helfen, die Haftung von Krankenhauskeimen zu reduzieren

    Wissenschaftler der Universität des Saarlandes und des Karlsruher Instituts für Technologie haben gemeinsam herausgefunden, wie Bakterien auf – in mikroskopischen Maßstäben – rauen Oberflächen haften. Das Team aus den Disziplinen Physik, Mikrobiologie und Mathematik entdeckte, dass aus der ... mehr

  • q&more Artikel

    Analytische Quantifizierung von Gluten in Lebensmitteln

    Der Gesetzgebung zufolge dürfen Lebensmittel, die mit einem Glutenfrei-Symbol versehen sind, nicht mehr als 20 mg Gluten pro Kilogramm enthalten, was für Zöliakie-Betroffene aus gesundheitlichen Gründen lebenswichtig ist. mehr

    Bewertung der Lungentoxizität von Luftschadstoffen

    Die aktuellen Diskussionen zu Fahrverboten in europäischen Städten zeigen einerseits den hohen Stellenwert, den die Bevölkerung der Luftqualität zumisst, und andererseits den Mangel an Methoden, die von Luftschadstoffen ausgehende Beeinträchtigung der menschlichen Gesundheit direkt zu bewerten. mehr

    Biochemie in der Mikrowelle

    Die Entwicklung neuer Pharmazeutika beruht auf dem zunehmenden Verständnis intrazellulärer Vorgänge. Insbesondere durch die Erforschung von Ligand-Rezeptor-Wechselwirkungen können Wirkstoffe ­besser angepasst werden. Um Medikamente an ihren Wirkungsort ­zu bringen, werden sog. „Carrier“-Mol ... mehr

  • Autoren

    Prof. Dr. Katharina Scherf

    Katharina Scherf, Jahrgang 1985, studierte Lebensmittelchemie an der Technischen Universität München (TUM). Ihre Promotion und Habilitation erwarb sie ebenfalls an der TUM und war als leitende Wissenschaftlerin am Leibniz-Institut für Lebensmittel-Systembiologie an der TUM tätig. 2019 wurde ... mehr

    Majlinda Xhaferaj

    Majlinda Xhaferaj, Jahrgang 1992, schloss ihr Lebensmittelchemiestudium im Jahr 2018 am Karlsruher Institut für Technologie (KIT) ab. Seit 2019 ist sie Doktorandin in der Abteilung für Bioaktive und Funktionelle Lebensmittelinhaltsstoffe mit dem Schwerpunkt der Glutenanalytik zur Verbesseru ... mehr

    Dipl. Ing. Sonja Mülhopt

    Sonja Mülhopt erwarb 2000 ihr Diplom für Maschinenbau an der Berufsakademie (heute DHBW) Mannheim. Die begleitende Ausbildung durchlief sie am Forschungszentrum Karlsruhe, dem heutigen Karlsruher Institut für Technologie (KIT). 2014 erhielt sie den Master of Science für Chemieingenieurwesen ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: