16.06.2015 - Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik (IGB)

Prozessanalysen in Echtzeit

Mit einem von Fraunhofer-Wissenschaftlern entwickelten Echtzeit-Massenspektrometer ist es erstmals möglich, bis zu 30 Bestandteile gleichzeitig aus der Gasphase und einer Flüssigkeit zu analysieren – auch in situ. Das empfindliche Messsystem eignet sich damit auch für die automatisierte Überwachung und Steuerung von chemischen Reaktionen und biotechnologischen Prozessen.

Für die Überwachung von Herstellungsverfahren ist der automatisierte Nachweis von Produkten oder Nebenprodukten direkt im Prozess nicht mehr wegzudenken. Ein schnelles und selektives Verfahren, um Verbindungen in technischen, chemischen und biotechnischen Anwendungen sehr empfindlich und gleichzeitig über einen extrem großen Messbereich zu analysieren, ist die Massenspektrometrie. Neben der Identifizierung von Verbindungen ist es mit dieser Methode auch möglich, die Ionenströme quantitativ auszuwerten. Über eine integrierte Datenauswertung können so Konzentrationen der zu überwachenden Stoffe ermittelt und Konzentrationsänderungen, beispielsweise bei chemischen oder biochemischen Reaktionen, erfasst werden.

Bisher war in der Prozess-Massenspektrometrie der Nachweis allerdings auf Verbindungen aus der Gasphase beschränkt. Nun haben Forscher der Fraunhofer-Institute für Chemische Technologie ICT, Pfinztal, und Grenzflächen- und Bioverfahrenstechnik IGB, Stuttgart, ein Massenspektrometer entwickelt, mit dem gleichzeitig sowohl Gase als auch Flüssigkeiten in Echtzeit überwacht werden können.

Multi-Einlass mit Membran

Kernstück des neuartigen, patentierten Messsystems foxySPEC ist ein modifizierter, als Bypass angelegter Einlass zur Analysatoreinheit, mit dem auch Komponenten aus der Flüssigphase analysiert werden können. An diesem Einlass ist eine mikroporöse Membran angebracht. »Angetrieben durch den Unterdruck auf der Permeatseite verdampfen flüchtige Substanzen aus der flüssigen Probe und passieren die Membran«, erläutert Martin Joos vom Fraunhofer ICT. Für polare, wässrige Lösungen dagegen ist die Membran undurchlässig. Ihre spezielle räumliche Struktur macht sie zudem unempfindlich gegen Verstopfung durch Feststoffe.

Darüber hinaus wird mit einem neu entwickelten Messfühler sogar die In-situ-Analyse von Flüssigkeiten, beispielsweise in Fermentern bei biotechnologischen Herstellungsprozessen möglich. »In diesem Fall befindet sich die Membran, in den Messfühler integriert, direkt im Inneren des zu überwachenden Reaktors«, beschreibt der Verfahrensingenieur Matthias Stier vom Fraunhofer IGB den Vorteil. Aufgrund des physikalischen Phasentransfers in der chemisch inerten Membran zeigen beide Membran-Einlasssysteme keine Querempfindlichkeit und sind sehr langzeitstabil. Die neuen Membran-Einlässe sind zusätzlich zu herkömmlichen Gaseinlässen installiert.

Automatisierte Steuerung für Analysen in Echtzeit

Welcher Einlass vom Probennehmer angesteuert wird, kann der Anwender an der Steuerungseinheit einstellen. »Die von uns entwickelte Siemens-Programmierung erlaubt, die Probenführung über entsprechende Ventile innerhalb von Sekunden beliebig zwischen Gas-, Flüssig- und In-situ-Analyse umzuschalten und liefert damit Ergebnisse in Echtzeit«, führt IGB-Ingenieur Stephan Scherle aus. Zudem ist das verwendete Quadrupol-Massenspektrometer mit einer Auto-Kalibrierung ausgestattet, sodass simultan bis zu 30 Komponenten im Stoffgemisch – ohne vorherige Trennung – bestimmt werden können.

Vielfältige Einsatzgebiete

Die Nachweisgrenzen des foxySPEC liegen dabei unter 10 µg Substanz pro Liter und somit im unteren ppb-Bereich. Da die Gase über Edelstahlleitungen in das Vakuumsystem der Nachweiseinheit angesaugt werden, sind Entfernungen von über 10 Metern zur Probenahmestelle möglich, ein aufwändiges Pumpen der Proben entfällt. Je nach Auslegung von Länge und Durchmesser der Edelstahlkapillaren können Gase in Echtzeit im Vakuum bis zu 1 mbar oder bei Überdruck bis zu 100 bar gemessen werden.

Das Echtzeit-Massenspektrometer ist für den vielfältigen Einsatz in Chemie und Biotechnologie, Pharmazie und Lebensmittelherstellung geeignet und soll branchenspezifisch weiterentwickelt werden.

Geeignet für Industrie 4.0

Die niedrige Nachweisgrenze, die Möglichkeit mehrere Komponenten gleichzeitig zu messen und die hohe Geschwindigkeit, mit der Daten erzeugt werden, bieten ideale Voraussetzungen, um auf der Grundlage einer kontinuierlichen Überwachung Prozesse effizienterer zu gestalten. Im Sinne der Plattform »Industrie 4.0« können die Daten in Echtzeit über intelligente Programme ausgewertet werden, um auf weitere, bisher nicht beachtete Parameter in Prozessen zu schließen und damit die Produktion weiter zu optimieren und zu beschleunigen. Da das foxySPEC alle Massen detektiert, die in die Messeinheit gelangen, ist das Gerät nicht nur auf einen Stoff beschränkt, wie es bei den meisten Sensoren der Fall ist. Damit lässt sich das foxySPEC flexibel einsetzen und ist das ideale Messgerät für eine nachfrageorientierte Produktion. »Werden in einer Anlage je nach Kundenwunsch verschiedene Produkte hergestellt, kann das foxySPEC ohne jeglichen Umbau oder Anpassung direkt als Messgerät weiterverwendet werden«, so Matthias Stier.

Präsentation auf der ACHEMA

Wie empfindlich und selektiv das Massenspektrometer funktioniert, demonstrieren die Fraunhofer-Forscher an einem ersten kompakten Prototyp auf der Messe ACHEMA vom 15. bis 19. Juni 2015 in Frankfurt am Fraunhofer-Gemeinschaftsstand in Halle 9.2, Stand D64. Beim Innovation Award zur ACHEMA 2015 ist foxySPEC in der Kategorie Labor- und Analysentechnik bereits auf der Shortlist der fünf Nominierten.

Fakten, Hintergründe, Dossiers

Mehr über Fraunhofer-Institut IGB

  • News

    Kohlenstoffdioxid als Rohstoff für Kunststoffe und Co.

    Kohlenstoffdioxid ist einer der Haupttreiber des Klimawandels – die Emissionen müssen daher künftig sinken. Einen möglichen Weg zur Kohlendioxid-Reduktion zeigen Fraunhofer-Forschende auf: Sie nutzen das Klimagas als Rohstoff, etwa für Kunststoffe. Dazu stellen sie aus Kohlendioxid zunächst ... mehr

    Eine echte Alternative zum Erdöl

    Ein Forschungsteam der Fraunhofer-Gesellschaft und der Technischen Universität München (TUM) unter Leitung des Chemikers Volker Sieber hat eine neue Polyamid-Familie entwickelt, die sich aus einem Nebenprodukt der Zelluloseproduktion herstellen lässt – ein gelungenes Beispiel für nachhaltig ... mehr

    Impfstoffe chemikalienfrei produzieren

    Impfstoffe herzustellen ist ein schwieriges Unterfangen: Bei den Tot-Impfstoffen müssen die Krankheitserreger abgetötet werden, ohne deren Struktur zu verändern. Bislang geschieht dies meist mit giftigen Chemikalien. Eine neuartige Technologie von Fraunhofer-Forschern nutzt stattdessen Elek ... mehr

  • q&more Artikel

    3D-Gewebemodelle mit Immunkompetenz

    Die angeborene Immunität ist ein zentraler Bestandteil der menschlichen Immunabwehr. Mustererkennungsrezeptoren (Pattern Recognition Receptors, PRR), wie die Toll-like-Rezeptoren (TLR) spielen in diesem System eine Schlüsselrolle. mehr

  • Autoren

    Dr. Anke Burger-Kentischer

    Anke Burger-Kentischer promovierte an der Universität Tübingen über „Zelluläre und molekulare Mechanismen der strahleninduzierten Lungenfibrose“. Während ihres Postdoc-Aufenthaltes am Institut für Physiologie der Ludwig-Maximilians-Universität München beschäftigte sie sich mit dem zellspezi ... mehr

    Dr. Kai Sohn

    Kai Sohn, Jahrgang 1968, studierte Biologie an der Universität Heidelberg und schloss sein Studium als Diplombiologe ab. Er promovierte 1997 am Biochemiezentrum der Universität Heidelberg. Ab 1998 arbeitete Dr. Sohn an der Universität Stuttgart als Postdoc im Bereich medizinisch relevanter ... mehr

    Prof. Dr. Steffen Rupp

    Steffen Rupp, geboren 1962, studierte Chemie an den Universitäten Stuttgart, Freiburg und Cincinnati, OH, USA. Er promovierte 1994 am Institut für Biochemie der Universität Stuttgart mit Auszeichnung. Von 1995-1998 arbeitete er im Rahmen seines DFG-Forschungsstipendiums am Whitehead Institu ... mehr

Mehr über Fraunhofer-Institut ICT

  • News

    Schnelle spektroskopische Prozessanalytik

    Im globalen Wettbewerb der chemischen Industrie fordern zunehmend dynamische Märkte und Produktzyklen immer kürzere Prozessentwicklungszeiten so-wie flexible und gleichermaßen effiziente Produktionsprozesse. Mit dem kombinierten Einsatz von Mikroverfahrenstechnik und spektroskopischer Proz ... mehr

    Kraftstoff und Chemikalien aus Stahlwerksabgasen

    Kohlenmonoxidreiche Abgase aus Stahlwerken werden nur zu einem kleinen Teil als Strom oder Wärme zurückgewonnen. Fraunhofer-Forscher haben einen neuen Verwertungsweg für diese stofflich ungenutzte Kohlenstoffquelle aufgetan: Sie konnten im Labormaßstab aus den Abgasen Kraftstoffe und Spezia ... mehr

    Schutzschicht gegen Hitze und Oxidation

    Forscher entwickelten ein Beschichtungsverfahren, mit dem sie Bauteile in Turbinen, Triebwerken und Müllverbrennungsanlagen vor Oxidation und Hitze schützen wollen. Winzige Aluminiumoxidkugeln übernehmen dabei die Wärmedämmung. Im Labor funktioniert ihre Technologie bereits wirtschaftlicher ... mehr

Mehr über Fraunhofer-Gesellschaft

  • News

    Neue Einsatzgebiete für Mehrfarb-OLED-Mikrodisplays

    Wissenschaftlern des Fraunhofer-Instituts für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP ist es gelungen, ein mehrfarbiges OLED-Mikrodisplay zu realisieren, das gegenüber allen verfügbaren Mikrodisplays am wenigsten Strom verbraucht mit einer gegenüber monochromen Displa ... mehr

    Kohlenstoffdioxid als Rohstoff für Kunststoffe und Co.

    Kohlenstoffdioxid ist einer der Haupttreiber des Klimawandels – die Emissionen müssen daher künftig sinken. Einen möglichen Weg zur Kohlendioxid-Reduktion zeigen Fraunhofer-Forschende auf: Sie nutzen das Klimagas als Rohstoff, etwa für Kunststoffe. Dazu stellen sie aus Kohlendioxid zunächst ... mehr

    Pflanzliche Proteine ersetzen erdölbasierte Rohstoffe

    Proteine gehören wie Cellulose, Lignin und Fette zu den nachwachsenden Rohstoffen. Ihr Potenzial für die chemische Industrie wird bisher kaum genutzt. Dies wollen Forscherteams des Fraunhofer-Instituts für Verfahrenstechnik und Verpackung IVV gemeinsam mit Partnern ändern und die vielverspr ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: