10.04.2015 - DWI - Leibniz-Institut für Interaktive Materialien e.V.

Wissenschaftler programmieren Lebensdauer von Nanostrukturen

Materialien, die sich eigenständig bilden und sich nach getaner Arbeit ohne weiteres Zutun auflösen, könnten vielseitigen Einsatz finden – als temporäre Datenspeicher oder medizintechnische Werkstoffe. Sie könnten etwa den Blutfluss einer Vene für die Dauer einer Operation unterbrechen und ihn anschließend wieder freigeben. Das Team um Dr. Andreas Walther vom DWI – Leibniz-Institut für Interaktive Materialien in Aachen entwickelte ein System, in dem ein einziges Startsignal nicht nur den Aufbau von Nanostrukturen, sondern auch deren Lebensdauer und Abbau zeitlich steuert. Ihre Ergebnisse veröffentlichen die Wissenschaftler als Titelpublikation in der Zeitschrift Nano Letters.

Biologisch inspirierte Prinzipien zur Bildung komplexer Materialstrukturen sind eine der primären Forschungsinteressen von Andreas Walther. Um immer feinere Objekte zu generieren, greift die Nanotechnologie auf das Prinzip der Selbstassemblierung zurück. Winzige Partikel ordnen sich hier durch intermolekulare Wechselwirkungen zu dreidimensionalen Architekturen – bis ein Gleichgewichtszustand erreicht ist. Die Natur geht allerdings noch einen Schritt weiter. Sie hält bestimmte Prozesse außerhalb eines solchen Gleichgewichts. Auf- und Abbaureaktionen stehen in direkter Konkurrenz zueinander. Beispielsweise erfahren Mikrotubuli, Bestandteile des Zellskeletts, kontinuierlichen Auf-, Ab- und Umbau.

In Anlehnung an diese Prozesse entwickelte die Arbeitsgruppe von Andreas Walther nun ein wässriges, nach außen abgeschlossenes System, in dem die Balance zwischen aufbauender Reaktion und vorprogrammierter Aktivierung der Abbaureaktion die Material-Lebensdauer vorgibt. Der gesamte Prozess wird von einem einzigen Startsignal initiiert. Dies stellt den wesentlichen Unterschied zu bereits bestehenden Systemen dar, in denen immer ein weiteres Signal notwendig, ist um den Abbau auszulösen.

Im vorliegenden DWI-Ansatz steuern Änderungen des pH-Werts die Auf- und Abbaureaktion. Die Wissenschaftler drücken eine Art Startknopf, indem sie eine Base in das wässrige System geben und auf diese Weise den pH-Wert erhöhen. Die Ausgangsmoleküle, einzelne Polymerstränge, Nanopartikel oder Peptid-Stränge, fügen sich daraufhin zu einer dreidimensionalen Struktur zusammen. Gleichzeitig mobilisiert die Änderung des pH-Werts auch einen Deaktivator. Doktorand Thomas Heuser erklärt: „Man kann sich hier vorstellen, dass mit der Veränderung des pH-Werts ganz allmählich ein Ausschalter betätigt wird. Bis er seine volle Wirkung entfaltet, vergeht einige Zeit. Je nach chemischer Beschaffenheit des Ausschalters sind es einige Minuten, Stunden oder sogar ein ganzer Tag. Dementsprechend bleibt das Aggregat in diesem Zeitraum stabil und wird erst danach in seine einzelnen Bestandteile aufgelöst.“

Bisher wird der Deaktivator durch Hydrolyse aktiviert, also durch Reaktion mit Wassermolekülen und die damit verbundene Spaltung einer chemischen Bindung. Doch die Wissenschaftler feilen bereits an einer neuen Variante und möchten dann Enzyme einsetzen, um den Abbauprozess langsam zu initiieren.

Fakten, Hintergründe, Dossiers

Mehr über Leibniz-Institut für Interaktive Materialien

  • News

    Mikro-Lieferservice für Dünger

    Pflanzen können Dünger nicht nur über die Wurzeln, sondern auch über die Blätter aufnehmen. Über einen längeren Zeitraum gestaltet sich eine Blattdüngung jedoch schwierig. Deutsche Forscher stellen jetzt in der Zeitschrift Angewandte Chemie ein leistungsfähiges Zufuhrsystem für Mikronährsto ... mehr

    Wasserabweisende Membran mit Nano-Kanälen für hocheffiziente Energiespeicherung

    Energiespeicherung und eine stabile Stromversorgung sind ein zentrales Thema, wenn es um die Nutzung von Energie aus Solar- und Windkraftanlagen geht. Hier unterliegt der Energiegewinn natürlichen Schwankungen, die durch effiziente Speichermethoden ausgeglichen werden müssen. Wissenschaftle ... mehr

    Perlmutt, aufgemotzt

    Perlmutt hat hochinteressante optische und mechanische Eigenschaften, ist aber für die industrielle Herstellung von Materialien ungeeignet. Nanokomposite mit Perlmuttstruktur kann man herstellen, aber es ist sehr schwierig, die gewünschten Eigenschaften einzustellen. Wissenschaftler in Aach ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: