q&more
Meine Merkliste
my.chemie.de  
Login  

News

Der Pirat in der Mikrobe

Bakterien bewegen sich nicht rein zufällig, wenn sie die Oberfläche von Wirtszellen auskundschaften

© Universität Köln

Ein Bakterium vor einer ständigen Richtungsentscheidung: Neisseria gonorrhoeae bewegt sich über Oberflächen, indem es in alle Richtungen Pili, also filigrane Stäbchen ausfährt, diese an den Untergrund heftet und sie wieder einzieht. Dabei kriecht es an dem Pilus entlang, das den stärksten Zug ausübt. Allerdings verläuft seine Route nicht ganz so zufällig, wie dieses Tauziehen mit zufälligem Ausgang erwarten ließe.

13.05.2014: Piraten könnten die Technik, mit der sie Schiffe kapern, bei Bakterien abgeschaut haben. Wie die Freibeuter ihr Boot mit Enterhaken an ein Beuteschiff heranziehen, verwenden die Einzeller filigrane Stäbchen – Biologen sprechen von Pili –, um über eine Oberfläche zu kriechen. Für ihre Bewegung hat ein Forscherteam des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam-Golm und der Universität Köln nun anhand von Experimenten ein Modell entwickelt. Schon länger wissen Biologen, dass sich die Pili an den Untergrund heften und dass sich die Mikroben an ihnen entlang ziehen, wobei sie sich die Stäbchen wieder einverleiben. Manche Mikroben wie etwa Neisseria gonorrhoeae, der Erreger der Gonorrhö, strecken ihre Pili jedoch in alle Richtungen aus. Daher hängt ihr Weg auch davon ab, welcher Pilus gerade den stärksten Zug ausübt. Die Wissenschaftler können nun erklären, warum die Bakterien dennoch zumindest für ein bis zwei Sekunden geradeaus wandern. Eine detaillierte Kenntnis dieses Mechanismus verbessert das Verständnis, wie Bakterien Zellen infizieren und könnte auch Ansatzpunkte liefern, diese zu bekämpfen.

Wenn Piraten in eine Lage gerieten, die mit der Fortbewegung von Neisseria gonorrhoeae vergleichbar wäre, würde man ihnen wohl bald das Handwerk legen. Dann wären sie rundherum von Marineschiffen umzingelt. Und wenn sie nun im Angriff die beste Verteidigung suchten, entwickelte sich die Situation vollends zur Farce. Statt zielstrebig das schnellste Schiff zu übernehmen und damit die Flucht zu ergreifen, würden die Freibeuter erst einmal eine Art Tauziehen austragen, an welches Boot sie sich mit ihren Enterhaken heranziehen sollen. So ähnlich bewegt sich jedenfalls N. gonorrhoeae etwa auf der Oberfläche einer Wirtszelle.

Durch ein Tauziehen mit zufälligem Ausgang entscheidet das Bakterium nämlich, welche Richtung es nimmt, um mit Artgenossen eine Kolonie zu bilden oder den besten Zugang in die Zelle zu suchen. Doch wie Wissenschaftler um Stefan Klumpp, der eine Forschungsgruppe am Max-Planck-Institut für Kolloid- und Grenzflächenforschung leitet, und Berenike Maier, die mit ihrem Team an der Universität Köln forscht, jetzt herausgefunden haben, irren die Mikroben nicht ganz so zufällig durch die Gegend, wie demnach eigentlich zu erwarten wäre.

Die Bakterien machen gewissermaßen größere Schritte als auf einem allein vom Zufall bestimmten Weg, wenn sie eine Oberfläche auskundschaften. Auf diese Weise können sie ihre Umgebung rascher abtasten und einen Ort ausfindig machen, an dem sie in eine Wirtszelle eindringen können, oder andere Bakterien aufspüren, um mit diesen eine Kolonie zu gründen.

Das Modell des eindimensionalen Tauziehens lässt sich nicht einfach erweitern

Nicht nur die Richtungsentscheidungen mancher Bakterien fallen in einem biologischen Tauziehen. So bestimmen Zellen auch etwa die Frage, wohin sie Enzyme und andere Biomoleküle transportieren. Zudem entsteht der Spindelapparat, an dem entlang bei der Zellteilung die Chromosomen aufgeteilt werden, in einer Art intrazellulärem sportlichen Wettbewerb. Meistens geht es beim Tauziehen in der Zelle um Bewegungen in zwei entgegengesetzte Richtungen, so wie es Mannschaften auch seit der Antike praktizieren. Diesen eindimensionalen Fall verstehen Biophysiker auch bereits sehr gut. Anders als den Weg von Neisseria gonorrhoeae. „Bislang gab es nur ein Modell für ein eindimensionales Tauziehen in Zellen“, sagt Stefan Klumpp. „Wenn wir dieses Modell einfach in zwei Dimensionen erweitern, decken sich die theoretischen Vorhersagen nicht mit dem experimentell beobachteten Verhalten der Bakterien.“

Beim eindimensionalen Tauziehen entscheidet ausschließlich der Zufall, welche Seite die Oberhand behält und in welche Richtung eine Fracht transportiert wird. Auf zwei Dimensionen übertragen, hieße dies, dass N. gonorrhoeae ständig die Richtung wechseln müsste, wenn es sich an einem seine Bio-Enterhaken ein Stück vorwärts gezogen und diesen dabei wieder aufgespult hat. „In unseren Experimenten beobachten wir aber, dass das Bakterium für mehr als eine Piluslänge die Richtung beibehält“, sagt Berenike Maier, die den experimentellen Teil der Studie an der Universität Köln leitete. Sie und ihre Kollegen ließen die Einzeller auf proteinbeschichteten Glasplättchen kriechen. Zudem beobachteten sie, wie die Bakterien mit ihren Pili mit erstaunlich großer mechanischer Kraft winzige Kügelchen aus dem Fokus einer Laserpinzette zerrten.

Mechanische Erinnerung an die Bewegungsrichtung

Entsprechend der experimentellen Ergebnisse entwickelten Stefan Klumpp und seine Mitarbeiter ein Computermodell, das die Wege der Bakterien realistisch erfasst. „Wir haben zwei Mechanismen identifiziert, die dem Bakterium ein Erinnerungsvermögen für die Richtung geben, in der es sich gerade bewegt“, sagt der Wissenschaftler. „Wenn wir diese in unserem Modell berücksichtigen, gibt es das experimentell beobachtete Verhalten sehr gut wieder.“

Gemeinsam mit Alexander Schmidt, der am Zentrum für Molekularbiologie der Entzündung der Universität Münster forscht, fanden die Wissenschaftler heraus, dass ein Bakterium zum einen Bündel von zwei oder drei Pili in eine Richtung ausfährt. So steigt die Wahrscheinlichkeit, dass sich beim bakteriellen Tauziehen nacheinander mehrere Pili durchsetzen, die den Einzeller in ein und dieselbe Richtung ziehen. Die Chancen dafür erhöhen sich zum anderen, weil die Bakterien an einer Stelle, an der sie gerade einen Pilus eingeholt haben, gleich wieder eins mit derselben Orientierung von sich strecken können. Dafür sorgt ein Proteinkomplex, der an der entsprechenden Position der Zellwand sitzt und immer wieder einen der bakteriellen Enterhaken aus dessen Bestandteilen zusammensetzt und mit derselben Stoßrichtung aus der Zelle schiebt, wenn er gerade wieder einen zurückgezogen hat. „Die Erinnerung für die Bewegungsrichtung von Neisseria gonorrhoeae beruht also auf rein mechanischen Prozessen“, sagt Berenike Maier.

Aus dem Verständnis der Bewegung könnten sich therapeutische Ansätze ergeben

Die Forscher vermuten, dass andere Bakterien ihre Schrittlänge auf ähnliche Weise vergrößern – zumindest solche mit einer eher runden Gestalt, die Pili in alle Richtungen bilden. Längliche Mikroben fahren ihre Fortbewegungsmittel dagegen nur an ihren beiden Enden aus und steuern ihren Weg biochemisch. Biochemische Signale spielen jedoch auch bei der Bewegung von N. gonorrhoeae eine Rolle: „Vermutlich bewirken biochemische Signale der Wirtszelle, dass das Bakterium an einer möglichen Stelle für die Infektion seine Schrittlänge verkürzt“, sagt Stefan Klumpp. So bilden die Einzeller seltener Minibündel und verhindern auf diese Weise, dass sie am Einfallstor in die Zelle vorbei kriechen.

Ein genaues Verständnis, wie sich infektiöse Mikroben mithilfe ihrer Pili fortbewegen, könnte auch medizinische Bedeutung haben. So ergeben sich daraus womöglich Ansatzpunkte für neue Antibiotika. Denn nur wenn die Erreger ihre Enterhaken in gewohnter Manier einsetzen können, gelingt es ihnen, eine Wirtszelle zu kapern.

Originalveröffentlichung:
Rahul Marathe et al.; Bacterial twitching motility is coordinated by a two-dimensional tug-of-war with directional memory; Nature Communications, 7. Mai 2014

Fakten, Hintergründe, Dossiers

  • Bakterien
  • Antibiotika
  • Mikroben
  • Neisseria gonorrhoeae
  • Universität zu Köln

Mehr über MPI für Kolloid- und Grenzflächenforschung

  • News

    Ins richtige Licht gerückt - Reproduzierbare und nachhaltigere Kupplungsreaktionen

    Ein Forscherteam berichtet in der Fachzeitschrift Nature Catalysis, dass nachhaltige Kohlenstoff-Stickstoff Kreuzkupplungen mithilfe von einfachen Nickelsalzen, Kohlenstoffnitriden und Licht durchgeführt werden können. Die Chemiker forschen an der Verwendung von günstigen und wiederverwendb ... mehr

    Aus eins mach zwei – Teilung künstlicher Zellen

    Die Erfolgsgeschichte des Lebens auf der Erde beruht auf der erstaunlichen Fähigkeit von lebenden Zellen, sich in zwei Tochterzellen zu teilen. Während eines solchen Teilungsprozesses muss die äußere Zellmembran eine Reihe von Formänderungen durchlaufen, die schließlich zur Membranteilung f ... mehr

    Lass uns eine Zelle bauen

    Zellen sind die Grundbausteine allen Lebens. Ihr Inneres bietet eine ideale Umgebung, in der die elementaren Moleküle des Lebens interagieren können, um chemische Reaktionen stattfinden zu lassen und somit Leben ermöglichen. Die biologische Zelle ist jedoch sehr komplex, sodass es schwierig ... mehr

  • q&more Artikel

    Mit Licht im Kampf gegen Malaria

    Malaria stellt ein globales Gesundheitsproblem dar, das nur schwer in den Griff zu bekommen ist. Von den mehr als 200 Millionen Erkrankten sterben jedes Jahr über 500.000 und insbesondere für Kinder ist die Gefahr eines tödlichen Verlaufs hoch [1]. Die Krankheit wird durch einzellige Erreg ... mehr

  • Autoren

    Dr. Daniel Kopetzki

    Daniel Kopetzki, geb. 1983, studierte Chemie an der Universität Regensburg und promovierte am Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam in der Abteilung Kolloidchemie. Seit Sept. 2011 arbeitet er als Postdoktorand bei Prof. Dr. Seeberger am Max-Planck-Institut fü ... mehr

    Prof. Dr. Peter Seeberger

    Peter H. Seeberger, geb. 1966, studierte Chemie an der Universität Erlangen-Nürnberg und promovierte in Biochemie an der University of Colorado. Nach einem Postdocaufenthalt am Sloan-Kettering Institute for Cancer Research in New York City war er von 1998 – 2002 Assistant Professor und Firm ... mehr

Mehr über Uni Köln

  • News

    40 Jahre alter Katalysator birgt Überraschungen für die Wissenschaft

    Der Katalysator “Titansilikalit-1“ (TS-1) ist nicht neu: Schon vor fast 40 Jahren wurde er entwickelt und seine Fähigkeit entdeckt, Propylen in Propylenoxid, eine wichtige Grundchemikalie in der Chemieindustrie, umzuwandeln. Jetzt hat ein Wissenschaftlerteam der ETH Zürich, der Universität ... mehr

    Reparatur statt Neubau: Beschädigte Zell-Kraftwerke haben eigenen “Werkstatt-Modus”

    Eine durch Schäden gestörte Energieversorgung der Zelle kann sich selbst vor Funktionseinbußen schützen und in einer Art Werkstatt-Modus reparieren. Das zeigt ein neues Paper von der Molekularbiologin Professorin Dr. Aleksandra Trifunovic und Dr. Karolina Szcepanowska, einer leitenden Wisse ... mehr

    Geruch von Nahrung beeinflusst das Altern

    Der Geruch von Nahrung steuert zelluläres Recycling und beeinflusst die Lebenserwartung. Das konnte ein Team von Professor Thorsten Hoppe vom Exzellenzcluster für Alternsforschung (CECAD) am Fadenwurm zeigen. Überraschenderweise ist der Zusammenhang auf ein einziges Paar Nervenzellen des Ge ... mehr

  • q&more Artikel

    Goldplasma macht unsichtbare Strukturen sichtbar

    Die Mikro-Computertomographie (μCT) ist in den letzten Jahren zu einer Standardmethode in vielen medizinischen, wissenschaftlichen und industriellen Bereichen geworden. Das bildgebende Verfahren ermöglicht die zerstörungsfreie, dreidimensionale Abbildung verschiedenster Strukturen. mehr

  • Autoren

    Peter T. Rühr

    Peter T. Rühr, Jahrgang 1988, studierte Biologie mit Schwerpunkt auf der Kopfmorphologie von Ur-Insekten am Zoologischen Forschungsmuseum Alexander Koenig und an der Rheinischen Friedrich-Wilhelms-Universität Bonn, wo er 2017 seinen Masterabschluss erhielt. Seit 2018 promoviert er an der Un ... mehr

Mehr über Max-Planck-Gesellschaft

  • News

    Grüne Chemie: Nachhaltige p-Xylol-Produktion

    Limonade, Saft und Mineralwasser kommen oft in PET-Flaschen daher. Diese sind zwar praktisch und zweckmäßig, ihre Herstellung ist jedoch komplex und nicht unbedingt nachhaltig. Das Ausgangsmaterial für Terephthalsäure, die zur Herstellung von gesättigten Polyestern wie PET (Polyethylenterep ... mehr

    Design zuverlässiger nano- und mikroelektronischer Systeme

    Silizium verhält sich spröde wie Glas, dennoch ist es das Material auf das wir uns täglich in einer Vielzahl von wichtigen Anwendungen verlassen - egal ob es sich um die Elektronik in unserem Handy handelt, die Datenspeicher in unseren Laptops oder wichtige Sensoren im Auto. Seit kurzem hat ... mehr

    Bakterien hinterlassen Signatur in Darmkrebszellen

    Manche Bakterien verursachen Schäden im Erbgut infizierter Zellen, die zu Krebs führen könnten. Dass die Mikroben aber tatsächlich die Ursache einer Krebserkrankung sind, ist schwer nachzuweisen, da Krebs oft erst Jahre später ausbricht. Forscher suchen daher nach einer Signatur, die Bakter ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.