q&more
Meine Merkliste
my.chemie.de  
Login  

News

Im Grenzbereich der chemischen Bindung

Uwe Dettmar

Frankfurter Chemiker konnten ein Bor•Bor-Fragment untersuchen, indem sie es in einen Käfig einsperrten.

28.03.2014: Frankfurter Chemiker ist es gelungen, einen Laborexoten zu untersuchen und damit einen Beitrag zum Verständnis der chemischen Bindung zu leisten. Ihre Erkenntnisse zum Elektronentransport in Bor-haltigen organischen Molekülen ist außerdem praxisrelevant.

Der Nobelpreisträger Linus Pauling hat schon 1931 darauf hingewiesen, dass zwei Wasserstoffatome zusammengehalten werden können, wenn sie sich lediglich ein Elektron teilen (Einelektron-Zweizentrenbindung). Experimentell sind solche Systeme nur schwer zugänglich. Chemikern der Goethe-Universität ist es nun gelungen, eine Verbindung herzustellen, die eine stabile Bor•Bor Einelektron-Zweizentrenbindung enthält. Die in der Angewandten Chemie publizierten Ergebnisse leisten nicht nur einen Beitrag zum fundamentalen Verständnis der chemischen Bindung, sondern sind auch anwendungsrelevant: Bor-haltige organische Moleküle gelten als Materialien der nächsten Generation für Akkumulatoren, Solarzellen und Organische Leuchtdioden (OLEDs).

„Das Konzept der Elektronenpaarbindung, wie sie im elementaren Wasserstoff, H2, vorliegt, ist jedem Naturwissenschaftler geläufig, während Spezies mit Einelektron-Zweizentrenbindung wie das Wasserstoff-Radikalkation allenfalls als Laborkuriositäten wahrgenommen werden“, so Prof. Matthias Wagner vom Institut für Anorganische und Analytische Chemie der Goethe-Universität. Das liegt daran, dass die Synthese dieser Systeme und ihre Isolierung bei Raumtemperatur äußerst schwierig sind.

Die Frankfurter Arbeitsgruppen von Prof. Matthias Wagner und Prof. Max Holthausen konnten die Schwierigkeiten überwinden, indem sie sich zu Nutze machten, dass man das Bor•Bor-Fragment - im Gegensatz zum Wasserstoff-Radikalkation - in ein größeres Molekül integrieren kann. Dadurch ist es wie in einem Käfig, abgeschirmt. Boratome nehmen bereitwillig Elektronen auf. Positioniert man daher zwei von ihnen in räumlicher Nähe innerhalb einer starren Molekülarchitektur, so lässt sich anschließend ein Elektron gezielt zwischen die beiden Boratome einbetten, wo es von ihnen festgehalten wird.

Erste Hinweise, dass sich eine Bor•Bor Einelektron-Zweizentrenbindung als Folge der Injektion des Elektrons gebildet hatte, ergab die Röntgenstrukturanalyse am Einkristall. Sie zeigte eine signifikante Verkürzung des Bor-Bor-Abstands. Einen entscheidenden Beitrag zur Identifizierung der Einelektron-Zweizentrenbindung lieferte schließlich die quantenchemische Analyse der Elektronendichte, die das einzelne Elektron als fixierendes Bindeglied zwischen den beiden Bor-Atomen zweifelsfrei kennzeichnet.

Von praktischer Bedeutung sind die Untersuchungen vor allem deshalb, weil Bor-haltige organische Moleküle sich derzeit steigenden Interesses in den Materialwissenschaften erfreuen. Will man sie für Akkumulatoren, Solarzellen oder organische Leuchtdioden einsetzen, spielt der Elektronentransport innerhalb dieser Materialien eine wesentliche Rolle. „Dementsprechend stellt sich auch die Frage, unter welchen Umständen Elektronen zwischen Boratomen eingefangen werden und auf diese Weise den Ladungstransport behindern“, erläutert Max Holthausen.

Originalveröffentlichung:
Alexander Hübner et al.; Confirmed by X-ray Crystallography: The B⋅B One-Electron σ Bond; Angew. Chem. Int. Ed. 2014

Fakten, Hintergründe, Dossiers

Mehr über Uni Frankfurt am Main

  • News

    Neues Verfahren erhöht Testkapazitäten zum Coronavirus-Nachweis dramatisch

    Forschern des Blutspendedienstes des Deutschen Roten Kreuzes in Frankfurt um Prof. Erhard Seifried und dem Institut für Medizinische Virologie des Universitätsklinikums der Goethe-Universität Frankfurt um Prof. Sandra Ciesek ist es gelungen, ein Verfahren zu entwickeln, das es ermöglicht, d ... mehr

    Maßgeschneiderte Wirkstoffe aus dem Baukasten

    Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine Schlüsselrolle. Biotechnologen der Goethe-Universität ist es jetzt gelungen, diese Enzyme so zu verändern, dass ganz neue Naturstoffe oder a ... mehr

    Durchbruch in der Stickstoffchemie

    Zwei Moleküle Stickstoff macht über 78 Prozent der Atemluft aus. Er ist das Element, das auf der Erde am häufigsten in seiner reinen Form vorkommt. Der Grund für diese Fülle an elementarem Stickstoff ist die unglaubliche Stabilität des Moleküls N2, das aus zwei Stickstoffatomen besteht. In ... mehr

  • q&more Artikel

    Feiern und Hungern – für Bakterien kein Problem

    Bakterien sind wahre Überlebenskünstler. Im Laufe der Evolution haben sie zahlreiche Strategien entwickelt, sich an schnell veränderliche, unsichere Umweltbedingungen anzupassen. So ist ihr Stoffwechsel wesentlich ausgeklügelter als derjenige des Menschen. Sie können innerhalb von Minuten i ... mehr

    Warum Biosimilars und nicht Biogenerika?

    Bereits seit 2006 gibt es eine Gruppe gentechnisch hergestellter Medikamente, die unter der Bezeichnung „Biosimilars“ firmieren. Bis vor einem Jahr blieb diese Gruppe selbst in Fachkreisen eher unauffällig. Das ändert sich jedoch derzeit, da kürzlich ein erster Biosimilar-Antikörper zugelas ... mehr

    Paradigmen­wechsel

    Was wäre die Medizin ohne Arzneimittel? Aber werden Arzneimittel heute optimal ­eingesetzt? einesfalls, wie wir heute dank der Erkenntnisse aus der molekularen ­Medizin wissen. Denn beim Einsatz von Arzneimittel gilt es, zwei Aspekte zu beachten: ­die Krankheit und den Patienten. Erst langs ... mehr

  • Autoren

    Prof. Dr. Jörg Soppa

    Jörg Soppa, Jahrgang 1958, studierte Biochemie in Tübingen und promovierte anschließend am Max-Planck-Institut für Biochemie in Martinsried. Dort baute er ab 1990 eine eigene Forschungsgruppe auf und hielt Lehrveranstaltungen am Institut für Genetik und Mikrobiologie der Universität München ... mehr

    Prof. Dr. Heinfried H. Radeke

    Heinfried H. Radeke, Jg. 1955, studierte Medizin an der Medizinischen Hochschule Hannover (MHH; Approbation 1985) und promovierte mit der wissenschaftlich besten Dissertation des Jahres 1986. Nach zwei Jahren als Assistenzarzt in der Universitätskinder­klinik Göttingen begann er 1987 an der ... mehr

    Prof. Dr. Theo Dingermann

    Theodor Dingermann, Jg. 1948, studierte Pharmazie in Erlangen und promovierte 1980 zum Dr. rer. nat. 1990 erhielt er einen Ruf auf die C4-Professur für pharmazeutische Biologie der Universität Frankfurt. Von 2000 bis 2004 war er Präsident der Deutschen Pharmazeutischen Gesellschaft. Ferner ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.