05.10.2022 - Julius-Maximilians-Universität Würzburg

Künstliches Enzym spaltet Wasser

Auf dem Weg zur sonnenlichtgetriebenen Produktion von Wasserstoff ist ein Fortschritt gelungen

Ein Team aus der Chemie präsentiert einen enzymähnlichen molekularen Katalysator für die Wasseroxidation.

Die Menschheit steht vor einer zentralen Herausforderung: Sie muss den Übergang zu einer nachhaltigen und kohlendioxidneutralen Energiewirtschaft bewältigen.

Wasserstoff gilt als vielversprechende Alternative zu fossilen Brennstoffen. Er lässt sich unter Einsatz von elektrischem Strom aus Wasser herstellen. Stammt der Strom aus regenerativen Quellen, spricht man von grünem Wasserstoff. Noch nachhaltiger wäre es aber, könnte man Wasserstoff direkt mit der Energie des Sonnenlichts produzieren.

In der Natur läuft die lichtgetriebene Wasserspaltung bei der Photosynthese der Pflanzen ab. Diese verwenden dafür einen komplexen molekularen Apparat, das sogenannte Photosystem II. Dessen aktives Zentrum nachzuahmen ist eine vielversprechende Strategie, um eine nachhaltige Produktion von Wasserstoff zu realisieren. Daran arbeitet ein Team von Professor Frank Würthner am Institut für Organische Chemie und dem Zentrum für Nanosystemchemie der Julius-Maximilians-Universität Würzburg (JMU).

Wasserspaltung ist keine banale Reaktion

Wasser besteht aus einem Sauerstoff- und zwei Wasserstoffatomen. Der erste Schritt der Wasserspaltung ist eine Herausforderung: Um den Wasserstoff freizusetzen, muss aus zwei Wassermolekülen der Sauerstoff entfernt werden. Dafür ist es zunächst nötig, den beiden Wassermolekülen vier Elektronen und vier Protonen zu entziehen.

Diese oxidative Reaktion ist nicht banal. Pflanzen nutzen dafür ein komplexes Gebilde als Katalysator, bestehend aus einem Cluster mit vier Mangan-Atomen, über die sich die Elektronen verteilen können.

Würthners Team hatte in einem ersten Durchbruch eine ähnliche Lösung entwickelt, eine Art „künstliches Enzym“, das den ersten Schritt der Wasserspaltung erledigen kann. Dieser Wasseroxidations-Katalysator, bestehend aus drei miteinander agierenden Ruthenium-Zentren innerhalb eines makrozyklischen Konstrukts, katalysiert erfolgreich den thermodynamisch anspruchsvollen Prozess der Wasserspaltung. Publiziert wurde das 2016 und 2017 in den Journalen Nature Chemistry und Energy & Environmental Science.

Zum Erfolg mit einer künstlichen Tasche

Nun ist es den Chemikerinnen und Chemikern der JMU gelungen, die anspruchsvolle Reaktion mit einem einzigen Ruthenium-Zentrum effizient ablaufen zu lassen. Dabei wurden sogar ähnlich hohe katalytische Aktivitäten wie im natürlichen Vorbild erreicht, dem Photosyntheseapparat der Pflanzen.

„Möglich wurde dieser Erfolg, weil unser Doktorand Niklas Noll eine künstliche Tasche um den Ruthenium-Katalysator geschaffen hat. Darin werden die Wassermoleküle für den gewünschten protonengekoppelten Elektronentransfer vor dem Ruthenium-Zentrum in einer genau definierten Anordnung arrangiert, ähnlich wie es in Enzymen geschieht“, sagt Frank Würthner.

Publikation in Nature Catalysis

Die JMU-Gruppe präsentiert die Details ihres neuartigen Konzepts nun im Fachjournal Nature Catalysis. Das Team aus Niklas Noll, Ana-Maria Krause, Florian Beuerle und Frank Würthner ist davon überzeugt, dass sich dieses Prinzip auch zur Verbesserung anderer katalytischer Prozesse eignet.

Das langfristige Ziel der Würzburger Gruppe ist es, den Wasseroxidations-Katalysator in ein künstliches Bauteil einzubauen, das mit Hilfe von Sonnenlicht Wasser in seine beiden Bestandteile Wasserstoff und Sauerstoff zerlegt. Das wird noch seine Zeit dauern, denn dafür muss der Katalysator mit weiteren Komponenten zu einem funktionierenden Gesamtsystem gekoppelt werden – mit lichtsammelnden Farbstoffen und mit sogenannten Reduktionskatalysatoren.

Fakten, Hintergründe, Dossiers

  • Wasserspaltung
  • Photosystem II
  • Photosynthese

Mehr über Uni Würzburg

  • News

    Genaktivität im Reagenzglas

    Bei der Suche nach den Ursachen von Krankheiten und der Entwicklung neuer Therapien ist ein exaktes Verständnis der genetischen Grundlagen von zentraler Bedeutung. Würzburger Forscher haben dafür ein neues Verfahren entwickelt. Krankhafte Prozesse zeichnen sich in der Regel durch eine verän ... mehr

    Neue Akteure der Immunantwort

    Lymphknoten lösen sehr unterschiedliche Immunantworten aus – je nachdem, mit welchem Körpergewebe sie in Verbindung stehen. Verantwortlich für diesen Zusammenhang sind spezielle T-Zellen. Der menschliche Körper enthält 600 bis 800 Lymphknoten. Sie sind darauf spezialisiert, Immunantworten a ... mehr

    Wie Zucker Entzündungen fördert

    Wer über einen langen Zeitraum im Übermaß Zucker und andere Kohlenhydrate zu sich nimmt, trägt ein erhöhtes Risiko, eine Autoimmunkrankheit zu entwickeln. Bei den Betroffenen greift das Immunsystem das körpereigene Gewebe oder ein Organ an; die Folge sind beispielsweise chronisch entzündlic ... mehr

  • q&more Artikel

    Multinationale Medikamente

    Während in den 90er-Jahren des letzten Jahrhunderts 80 % aller Wirkstoffe und Hilfsstoffe in Europa bzw. in den USA produziert wurden, werden heute nahezu alle Ausgangsstoffe zur Herstellung von Arzneimittel in China und Indien hergestellt. Dies gilt nicht nur für die einzelnen Stoffe, sond ... mehr

    Hightech im Bienenvolk

    Vitale Bienenvölker sind von höchster Relevanz für die Aufrechterhaltung der natürlichen Diversität von Blütenpflanzen und die globale pflanzliche Nahrungsmittelproduktion, die zu 35 % von Insektenbestäubern abhängt, unter denen die Honigbiene (Apis mellifera) die überragende Rolle spielt. ... mehr

  • Autoren

    Prof. Dr. Jürgen Tautz

    Jg. 1949, studierte Biologie, Geographie und Physik an der Universität Konstanz und promovierte dort über ein sinnesökologisches Thema. Nach Arbeiten zur Bioakustik von Insekten, Fischen und Fröschen gründete er 1994 die BEEgroup an der Universität Würzburg, die sich mit Grundlagenforschung ... mehr

    Prof. Dr. Ulrike Holzgrabe

    Ulrike Holzgrabe (Jg. 1956) studierte Chemie und Pharmazie in Marburg und Kiel. Nach Approbation und Promotion folgte die Habilitation für Pharmazeutische Chemie 1989 ­in Kiel. Sie hatte eine Professur in Bonn (1990-1999), lehnte C4-Rufe nach Tübingen und Münster ab und folgte dem Ruf nach ... mehr

  • Videos

    Hightech im Bienenvolk

    mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: