27.07.2022 - Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH

Wie winzige Veränderungen T-Zellen helfen zu überleben

Wesentliche Funktion von m6A-Modifikationen in T-Zellen aufgedeckt

Die chemische Modifikation von Nukleinsäuren, die sogenannte Methylierung, existiert nicht nur auf der DNA, sondern auch auf der RNA. Bislang ist noch unklar, ob diese Methylierung für bestimmte Zelltypen wichtig ist und welche Auswirkungen sie auf das Zusammenwirken von Zellen im Körper hat. Die am häufigsten vorkommende Modifikation an mRNA, den Boten-RNA-Molekülen, ist das sogenannte N6-Methyladenosin, kurz m6A. Sie scheint eine entscheidende Rolle bei der Zelldifferenzierung zu spielen und eine Reihe von biologischen Vorgängen zu beeinflussen. Dabei wird eine Methylgruppe an das sechste Kohlenstoffatom der Nukleinbase Adenosin angehängt. Ein sogenannter Writer-Komplex entscheidet darüber, welches Adenosin-Molekül in welcher mRNA überhaupt modifiziert wird und damit zusätzlich zum genetischen Code eine neue Information trägt. Diese Information wird von sogenannten Reader-Proteinen „gelesen“, die dann darüber entscheiden, ob und wann eine mRNA in ein Protein übersetzt wird.

Ein neuer Erfolg für die Grundlagenforschung

Vigo Heissmeyer und sein Forscherteam untersuchten nun, wie sich der Verlust von m6A auf die Biologie von T-Zellen auswirkt. Dazu haben sie in ihrer Studie eine Komponente des m6A-Writer-Komplexes in der Maus ausgeknockt – sowohl in regulatorischen T-Zellen als auch in naiven T-Zellen. Aus vergangenen Studien leiteten die Forscher ab, dass m6A-Modifikationen essenziell für T-Zellen sind, wenn diese ein Antigen erkennen. Normalerweise würde die Antigenerkennung dazu führen, dass es zur T-Zell-Aktivierung, Zellteilung und zum Erwerb von Effektorfunktionen kommt. Regulatorische T-Zellen ohne m6A würden ihre Kontrolle über die Immunantwort verlieren. Naive Zellen bleiben dagegen in ihrer Entwicklung stehen und fallen in eine Art Koma – so dachten Forscher zumindest. Die neue Studie zeigt etwas anderes für naive T-Zellen: Die genetische Inaktivierung der m6A Genregulation verstärkt die Calcium-Signalübertragung, wodurch die T-Zellen hyperaktiviert werden und Zelltod ausgelöst wird. Die fehlende Regulation in den T-Zellen durch den Verlust der Adenosin-Methylierung zeigt bei Mäusen eine heftige Entzündungsreaktion. Sie leiden an chronisch-entzündlicher Darmerkrankung. Diese Krankheit wird durch ein Übermaß an aktivierten konventionellen T-Zellen ausgelöst. Ein Ungleichgewicht entsteht, weil die regulatorischen T-Zellen die Aktivierung der naiven T-Zellen nicht mehr ausbremsen können. Bei Abwesenheit von m6A in T-Zellen entsteht eine komplexe Deregulierung der Immunantwort, naive T-Zellen werden zwar durch Antigenerkennung aktiviert, teilen sich zunächst, sterben jedoch auch vermehrt – und können dennoch, vermutlich wegen fehlender Unterdrückung durch regulatorische T-Zellen, die Erkrankung auslösen.

Im nächsten Schritt wollen die Forschenden die Moleküle untersuchen, die die Methylierung erkennen. „Unsere Idee ist, durch die Erkenntnisse zur Genregulation neue Schlüsselmoleküle der T-Zellaktivierung zu definieren. Wir sehen anhand unserer Studie, welche mRNAs modifiziert sind und damit genau in ihrer Menge definiert sein müssen, damit Immunantworten fehlerfrei ablaufen“, sagt Vigo Heissmeyer. „Wenn wir es ganz verstehen, wie diese Regulation Zelltod oder Überaktivierung verhindert, wissen wir auch, welche Knotenpunkte therapeutisch manipulierbar sind.“

Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH

News weiterempfehlen PDF Ansicht / Drucken News zur Merkliste

Teilen bei

Fakten, Hintergründe, Dossiers

  • Zellen
  • Adenosin
  • RNA
  • T-Zellen
  • Methylierungen

Mehr über Helmholtz Zentrum München

  • News

    Knotenzentrische Genexpressionsmodelle (NCEMs): Graph Neural Networks enthüllen Kommunikation zwischen Zellen

    Wie kommunizieren einzelne Zellen in einem Gewebe? Und wie können diese Interaktionen modelliert werden, ohne dass die räumlichen Informationen verloren gehen? Forscher:innen um Fabian Theis vom Helmholtz Munich Computational Health Center und der Technischen Universität München (TUM) haben ... mehr

    Kompliziertes Hafer-Genom entschlüsselt

    Forschenden gelang es erstmals, das gesamte Erbgut von Hafer zu sequenzieren und umfassend zu charakterisieren. Im Vergleich zu anderen Getreidearten und zum Menschen ist das Hafer-Genom sehr komplex. Warum Hafer als gesünder gilt und weniger Allergien und Unverträglichkeiten auslöst als an ... mehr

    Tempolimit für Zellen: Neue Hoffnung für die Stammzelltherapie

    Kranke durch gesunde Zellen ersetzen: Das ist eines der wichtigsten Ziele der regenerativen Medizin. Besonders viel Hoffnung setzen Forschende auf das Konzept der Zellumprogrammierung, bei dem sie einen bestimmten Zelltyp in einen anderen verwandeln. Forschende von Helmholtz Munich haben es ... mehr

  • q&more Artikel

    Mit Deep Learning Blutkrankheiten besser verstehen

    Seit Langem nutzen Ärzte zur Diagnose von Erkrankungen des blutbildenden Systems das Lichtmikroskop. Die Auswertungen einzelner Blutzellen erfolgen hierbei zum großen Teil manuell. Jetzt erhalten sie digitale Unterstützung durch künstliche Intelligenz. mehr

    Herausforderung

    In nahezu allen Bereichen der Umwelt­analytik, aber auch in der Produktqualitätskontrolle, Life-Sciences, biomedizinischen oder pharmazeutischen Forschung hat sich in der Vergangenheit die Zahl der Analysen ständig erhöht. Analytische Untersuchungen dienen dem Schutz der Gesundheit von Mens ... mehr

  • Autoren

    Dr. Carsten Marr

    Carsten Marr, Jahrgang 1977, studierte Allgemeine Physik an der Technischen Universität München. Seine Diplomarbeit verfasste er am Max-Planck-Institut für Quantenoptik, Garching und forschte 2003 in der Quantum Information and Quantum Optics Theory Group am Imperial College, London. Im Jah ... mehr

    Dr. Christian Matek

    Christian Matek, Jahrgang 1986, studierte in München Physik und Medizin. Im Jahr 2014 promovierte er an der University of Oxford,Großbritannien, in theoretischer Physik. Seit 2017 liegt sein Forschungsschwerpunkt im Bereich der Künstlichen Intelligenz und des Maschinellen Lernens in der bil ... mehr

    Prof. Dr. Bernhard Michalke

    Bernhard Michalke ist Leiter der Forschungsgruppe „Element- und Elementspeziesanalytik“ und der „Zentralen Anorganischen Analytik“ am Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt. Prof. Michalke studierte Biologie an der Technischen Universität München u ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: