21.07.2022 - Technische Universität Wien

Eine Quantenwelle in zwei Kristallen

Durchbruch in der Neutronenphysik

Die Geschichte der Neutroneninterferometrie begann 1974 in Wien. Helmut Rauch, langjähriger Professor am Atominstitut der TU Wien, stellte aus einem Silizium-Kristall das erste Neutronen-Interferometer her und konnte am Wiener TRIGA-Reaktor die ersten Interferenzen mit Neutronen beobachten. Wenige Jahre später konnte die TU Wien an der weltstärksten Neutronenquelle, dem Institut Laue-Langevin (ILL) in Grenoble, die permanente Interferometriestation S18 einrichten, die bis heute besteht.

„Das Prinzip des Interferometers ähnelt dem berühmten Doppelspaltexperiment, bei dem ein Teilchen wellenartig auf einen Doppelspalt geschossen wird, als Welle beide Spalte gleichzeitig durchdringt und sich dann mit sich selbst überlagert, sodass danach am Detektor ein charakteristisches Wellenmuster entsteht“, erklärt Hartmut Lemmel vom Atominstitut der TU Wien.

Doch während beim Doppelspaltexperiment die beiden Spalte nur einen minimalen Abstand voneinander entfernt sind, teilt man die Teilchen im Neutroneninterferometer in zwei verschiedene Pfade auf, zwischen denen mehrere Zentimeter liegen. Die Teilchenwelle erreicht eine makroskopische Größe – trotzdem entsteht durch Überlagerung der beiden Pfade ein Wellenmuster, das eindeutig beweist: Das Teilchen hat sich nicht für einen der beiden Pfade entschieden, es hat beide Pfade gleichzeitig benutzt.

Jede Störung zerstört das Ergebnis

Doch solche Quanten-Überlagerungen sind äußerst fragil. „Winzige Ungenauigkeiten, Vibrationen, Verschiebungen oder Rotationen zerstören den Effekt“, sagt Hartmut Lemmel vom Atominstitut der TU Wien. „Daher fräst man normalerweise das gesamte Interferometer aus einem einzigen Kristall heraus.“ In einem Kristall sind alle Atome miteinander verbunden und haben eine feste räumliche Beziehung zueinander – so kann man den Einfluss der äußeren Störungen auf die Neutronenwelle minimieren.

Das schränkt aber die Möglichkeiten der Neutroneninterferometrie stark ein, denn Kristalle kann man nicht in beliebiger Größe herstellen. „Schon in den 1990erjahren versuchte man daher, Neutroneninterferometer aus zwei Kristallen herzustellen, die dann in größerem Abstand voneinander positioniert werden können“, sagt Lemmel. „Doch das glückte nicht. Die Schwierigkeit daran ist, dass man die beiden Kristalle ganz exakt gegeneinander ausrichten muss.“

Extreme Genauigkeit

Die Anforderungen an die Genauigkeit sind extrem: Schon eine Verschiebung des Kristalls um die Distanz eines Atomdurchmessers verschiebt die Phase der Interferenz um eine volle Periode. Und wenn einer der Kristalle um einen Winkel in der Größenordnung von einem Hundertmillionstel Grad verdreht ist, verschwindet das Interferenzmuster ganz. Die nötige Winkelpräzision entspricht etwa der Präzision, mit der man ein von Wien nach Grenoble geschossenes Teilchen kontrollieren müsste, um dort in knapp 900 Kilometern Entfernung eine Stecknadel zu treffen – oder von der Erde aus einen Kanaldeckel auf dem Mond.

Das Istituto Nazionale di Ricerca Metrologica (INRIM) in Turin brachte die dafür nötige Erfahrung mit, die es auf dem Gebiet der Röntgeninterferometrie über Jahrzehnte hinweg gesammelt hatte. Auch Röntgeninterferometer bestehen aus Siliziumkristallen die ähnlich empfindlich sind. Die Empfindlichkeit gegenüber der räumlichen Verschiebung eines Kristalls wurde in Turin dafür genutzt, die Gitterkonstante von Silizium mit bisher unerreichter Genauigkeit zu bestimmen. Dadurch wurde es möglich, die Atome einer makroskopischen Siliziumkugel zu zählen, die Avogadro- und die Planck-Konstante zu bestimmen und das Kilogramm neu zu definieren.

„Was mit Röntgenstrahlen funktioniert, sollte doch auch mit Neutronen möglich sein“, sagt Enrico Massa vom INRIM, „auch wenn die Anforderungen mit Neutronen noch höher sind.“ Mit einem zusätzlich eingebauten Laser-Interferometer, Vibrationsdämpfung und Temperaturstabilisierung ist es der Kollaboration jetzt schließlich gelungen, Neutroneninterferenz in einem System aus zwei voneinander getrennten Kristallen nachzuweisen.

Wichtige Grundlagenforschung

„Das ist für die Neutroneninterferometrie ein ganz entscheidender Durchbruch“ sagt Michael Jentschel vom ILL. „Denn wenn man zwei Kristalle so gut kontrollieren kann, dass Interferometrie möglich wird, dann kann man auch den Abstand zwischen diesen Kristallen erhöhen und somit recht einfach die Größe des Gesamtsystems erweitern.“

Diese Gesamtgröße bestimmt bei vielen Experimenten die Genauigkeit, die man bei der Messung erreichen kann. Man kann nun fundamentale Wechselwirkungen mit bisher unerreichter Genauigkeit untersuchen – etwa den Einfluss von Gravitation auf Neutronen im Quantenbereich oder die Existenz von hypothetischen neuen Naturkräften.

  • H. Lemmel, M. Jentschel, H. Abele, F. Lafont, B. Guerard, C.P. Sasso, G. Mana, E. Massa – Neutron interference from a split-crystal interferometer, J. Appl. Cryst. 55, (2022).

Fakten, Hintergründe, Dossiers

Mehr über TU Wien

  • News

    Drei Augen sehen mehr als zwei - katalytische Reaktion mit drei verschiedenen Mikroskopen unter exakt gleichen Bedingungen in Echtzeit verfolgt

    Man muss sehr genau hinsehen, um exakt zu verstehen, welche Prozesse an den Oberflächen von Katalysatoren ablaufen. Bei festen Katalysatoren handelt es sich oft um fein strukturierte Materialien aus winzigen Kristallen. Es gibt verschiedene Arten der Mikroskopie, mit denen man die chemische ... mehr

    Chemielabor auf einem Chip analysiert Flüssigkeiten in Echtzeit

    An der TU Wien wurde ein Infrarot-Sensor entwickelt, der in Sekundenbruchteilen Inhaltsstoffe von Flüssigkeiten detektiert. Was machen die Moleküle gerade im Reagenzglas? In der chemischen Technologie ist es oft wichtig, exakt zu messen, wie sich die Konzentration bestimmter Substanzen verä ... mehr

    Ein Molekül aus Licht und Materie

    Ein ganz besonderer Bindungszustand zwischen Atomen konnte nun erstmals im Labor erzeugt werden: Mit einem Laserstrahl lassen sich Atome polarisieren, sodass sie auf einer Seite positiv, auf der anderen Seite negativ geladen sind. Dadurch ziehen sie einander an und bilden einen ganz speziel ... mehr

  • q&more Artikel

    Wirkstoffsuche im Genom von Pilzen

    In Pilzen schlummert ein riesiges Potenzial für neue Wirkstoffe und wertvolle Substanzen, wie etwa Antibiotika, Pigmente und Rohstoffe für biologische Kunststoffe. Herkömmliche Methoden zur Entdeckung dieser Verbindungen stoßen zurzeit leider an ihre Grenzen. Neueste Entwicklungen auf den G ... mehr

    Organs-on-a-Chip

    Ziel der personalisierten Medizin oder Präzisionsmedizin ist es, den Patienten über die funktionale Krankheitsdiagnose hinaus unter bestmöglicher Einbeziehung individueller Gegebenheiten zu behandeln. Organ-on-a-Chip-Technologien gewinnen für die personalisierte Medizin sowie die pharmazeut ... mehr

  • Autoren

    Dr. Christian Derntl

    Christian Derntl, Jahrgang 1983, studierte Mikrobiologie und Immunologie an der Universität Wien mit Abschluss Diplom. Sein Doktoratsstudium im Fach Technische Chemie absolvierte er 2014 mit Auszeichnung an der Technischen Universität Wien. Dabei beschäftigte er sich mit der Regulation von ... mehr

    Sarah Spitz

    Sarah Spitz, Jahrgang 1993, studierte Biotechnologie an der Universität für Bodenkultur in Wien (BOKU) mit Abschluss Diplomingenieur. Während ihres Studiums war sie für zwei Jahre als wissenschaftliche Mitarbeiterin am Department für Biotechnologie (DBT) der BOKU angestellt. Nach einer inte ... mehr

    Prof. Dr. Peter Ertl

    Peter Ertl, Jahrgang 1970, studierte Lebensmittel- und Biotechnologie an der Universität für Bodenkultur, Wien. Im Anschluss promovierte er in Chemie an der University of Waterloo, Ontario, Kanada und verbrachte mehrere Jahre als Postdoc an der University of California, Berkeley, USA. 2003 ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: