06.07.2022 - Paul Scherrer Institut (PSI)

Spiegelbildliche Moleküle leichter unterscheiden

Mit schraubenförmigem Röntgenlicht lassen sich spiegelbildliche Substanzen – sogenannte Enantiomere – besser voneinander unterscheiden

Mithilfe einer neuen Methode lassen sich spiegelbildliche Substanzen besser voneinander unterscheiden. Das ist unter anderem bei der Herstellung von Arzneimitteln wichtig, weil die beiden Varianten völlig unterschiedliche Wirkungen im menschlichen Körper entfalten können. Das neue Verfahren beschreiben Forschende des Paul Scherrer Instituts PSI, der ETH Lausanne (EPFL) und der Universität Genf nun im Fachblatt Nature Photonics.

Einige Moleküle existieren in zwei Formen, die zwar strukturell identisch sind, aber in ihrem Aufbau spiegelbildlich zueinander – genau wie unsere rechte und linke Hand. Es handelt sich dann um chirale Moleküle. Ihre beiden spiegelbildlichen Formen nennt man Enantiomere. Bei biologischen Molekülen ist eine Chiralität besonders relevant, denn sie können unterschiedliche Wirkung im Körper entfalten. In der Biochemie, Toxikologie und bei der Entwicklung von Arzneimitteln ist es daher essenziell, Enantiomere voneinander zu trennen, damit beispielsweise nur die erwünschte Variante in ein Medikament gelangt. Nun hat ein Zusammenschluss von Forschenden vom PSI, der EPFL und der Universität Genf eine neue Methode entwickelt, mit der sich Enantiomere besser voneinander unterscheiden und somit trennen lassen: den helikalen Dichroismus im Röntgenbereich.

Die bisher etablierte Methode, mit der Enantiomere unterschieden werden, ist der sogenannte zirkulare Dichroismus, abgekürzt CD. Hierbei wird Licht mit einer bestimmten Eigenschaft – nämlich zirkular polarisiertes Licht – durch die Probe geschickt. Dieses Licht wird von den Enantiomeren unterschiedlich stark absorbiert. CD ist in der analytischen Chemie, in der biochemischen Forschung sowie in der Pharma- und Lebensmittelindustrie weit verbreitet. Allerdings sind bei CD die Signale von Natur aus sehr schwach: Die Lichtabsorption der beiden Enantiomere unterscheidet sich nur um knapp 0,1 Prozent. Es existieren verschiedene Strategien zur Verstärkung der Signale, die jedoch nur geeignet sind, wenn die Probe in der Gasphase vorliegt. Ein Grossteil der Chemie und Biochemie jedoch wird in flüssigen Lösungen betrieben, vor allem in Wasser.

Die neue Methode nutzt dagegen den sogenannten helikalen Dichroismus, kurz HD. Der Effekt, der diesem Phänomen zugrunde liegt, ist statt in der Polarisierung des Lichts in dessen Form zu finden: Die Wellenfront ist hierbei schraubenförmig gekrümmt.

An der Synchrotron Lichtquelle Schweiz SLS am PSI konnten die Forschenden erstmals erfolgreich zeigen, dass sich auch mit schraubenförmigem Röntgenlicht Enantiomere unterscheiden lassen. An der cSAXS-Strahllinie der SLS demonstrierten sie dies an einer pulverförmigen Probe des chiralen Metallkomplexes Eisen-tris-Bipyridin, die die Forschenden der Universität Genf zur Verfügung gestellt hatten. Das Signal, das sie erhielten, war um mehrere Grössenordnungen stärker als dasjenige, das sich mit CD erreichen lässt. HD lässt sich auch in flüssigen Lösungen nutzen, und erfüllt damit eine ideale Voraussetzung für Anwendungen in der chemischen Analytik.

Entscheidend für das Experiment war, Röntgenlicht mit den genau richtigen Eigenschaften zu erschaffen. Dies gelang den Forschenden mit sogenannten Spiralzonenplatten, einer besonderen Art von Beugungslinsen, durch die sie das Licht schickten, bevor es auf die Probe traf.

«Mit den Spiralzonenplatten konnten wir auf sehr elegante Art unserem Röntgenlicht die gewünschte Form und somit einen Bahndrehimpuls geben. Die Strahlen, die wir so erschaffen, werden auch als optische Wirbel bezeichnet», sagt PSI-Forscher Benedikt Rösner, der die Zonenplatten für dieses Experiment entworfen und hergestellt hat.

Jérémy Rouxel, Forscher an der EPFL und Erstautor der neuen Studie, ergänzt: «Der helikale Dichroismus liefert eine völlig neue Art der Licht-Materie-Wechselwirkung. Wir können ihn für die Unterscheidung von Enantiomeren perfekt ausnutzen.»

Fakten, Hintergründe, Dossiers

  • Moleküle
  • chirale Substanzen
  • Chiralität

Mehr über Paul Scherrer Institut

  • News

    Blauer Wasserstoff kann das Klima schützen

    Eine internationale Gruppe von Forschenden unter Leitung des Paul Scherrer Instituts PSI und der Heriot-Watt-Universität haben die Klimawirkungen von sogenanntem blauem Wasserstoff umfangreich analysiert. Er wird aus Erdgas gewonnen, wobei die dabei entstehenden CO2-Emissionen abgeschieden ... mehr

    Neuer Wirkstoff gegen Parasiten

    Forschende am Paul Scherrer Institut PSI haben eine chemische Verbindung identifiziert, die sich vermutlich als Wirkstoff gegen gleich mehrere einzellige Parasiten eignet. Dazu gehören die Erreger der Malaria sowie der Toxoplasmose. Angriffspunkt der vielversprechenden Substanz ist das Prot ... mehr

    Wie Katalysatoren altern

    PSI-Forschende haben eine neues Tomografie-Verfahren entwickelt, mit dem sie chemische Eigenschaften im Inneren von Katalysator-Materialien in 3D extrem genau und schneller als bislang messen können. Die Anwendung ist gleichermassen für Forschung und Industrie wichtig. Die Materialgruppe de ... mehr

Mehr über Université de Genève

  • News

    Ein negatives Enzym liefert positive Resultate

    In den letzten zwanzig Jahren hat die Chemie viele wichtige Instrumente und Verfahren für die Biologie hervorgebracht. Heute können wir Proteine herstellen, die in der Natur bisher nicht vorkommen. Es lassen sich Bilder von Ausschnitten lebender Zellen aufnehmen und sogar einzelne Zellen in ... mehr

  • q&more Artikel

    Kombinatorische Explosion

    Eines der Hauptziele in der Analytik ist die Entwicklung und Validierung von Methoden zur Identifizierung und Quantifizierung von Molekülen in komplexen Proben, um Forschungen in der Pharmazie, den Umweltwissenschaften, der Ernährungswissenschaft, Biologie und Medizin zu unterstützen. mehr

    Nachweis und Manipulation von Ionen

    Die pH-Elektrode ist mittlerweile einzigartig für die Überwachung chemischer Prozesse und überall verbreitet. Fortschritt in der Materialchemie und der fundamentalen Methodik öffnet die Tür für neue aufregende Ansätze. mehr

  • Autoren

    Prof. Dr. Gérard Hopfgartner

    Gérard Hopfgartner, Jg. 1960, studierte Chemie an der Universität Genf und promovierte 1991 im Bereich organischer Geochemie und Massenspektrometrie. Nach der Promotion setzte er seine Ausbildung an der Cornell Universität im Bereich der LC-MS/MS-Atmosphärendruck-Ionisation fort. 1992 trat ... mehr

    Prof. Dr. Eric Bakker

    Jg. 1965, ist Professor der Chemie an der Universität von Genf. Er absolvierte seine Ausbildung an der ETH in Zürich (Schweiz). Nach seiner Promotion führte er seine Studien an der Universität von Michigan in Ann Arbor, USA fort. Seine unabhängige Karriere begann an der Auburn Universität i ... mehr

    Xiaojiang Xie

    Jg. 1986, arbeitet zurzeit an seiner Doktorarbeit in der Forschergruppe von Prof. Eric Bakker an der Universität Genf. Zwischen seinem Bachelorabschluss an der Nanjing-Universität in China und dem Beginn seiner Studien in Genf arbeitete er für ein halbes Jahr bei WuXi AppTech (Shanghai) und ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: