05.07.2022 - Westfälische Wilhelms-Universität Münster

Auf dem Weg zu zellartigen Materialien

Zusammenspiel von molekularen Maschinen in metallorganischen Gerüstverbindungen entschlüsselt

Molekulare Maschinen steuern eine Vielzahl grundlegender Prozesse in der Natur. Eingebettet in eine zelluläre Umgebung, spielen sie eine zentrale Rolle beim intra- und interzellulären Transport von Molekülen sowie bei der Muskelkontraktion von Menschen und Tieren. Für die Funktion des gesamten Organismus ist meist eine wohldefinierte Orientierung und Anordnung der molekularen Maschinen essenziell. Zum Beispiel ermöglicht die spezifische Einbettung von Motorproteinen, welche eine Klasse von biomolekularen Maschinen bilden, ein dynamisches Zusammenspiel der unzähligen Proteine. Dadurch wird die Bewegung auf molekularer Ebene verstärkt und über verschiedene Größenordnungen hinweg bis zur makroskopischen Ebene übertragen.

Inspiriert von diesen biologischen Systemen, ist die Entwicklung von zellartigen Materialien, basierend auf künstlichen molekularen Maschinen ein aktuelles Forschungsfeld. Um die molekulare Kooperativität dieser Maschinen für die Anwendung in der Materialwissenschaft oder der Medizin zu nutzen, ist ein detailliertes Verständnis sowohl der molekularen Einbettung in eine Matrix als auch der intermolekularen Wechselwirkungen entscheidend. Elena Kolodzeiski und Dr. Saeed Amirjalayer vom Physikalischen Institut der Westfälischen Wilhelms-Universität (WWU) Münster ist es erstmals gelungen, das dynamische Zusammenspiel einer Klasse von künstlichen molekularen Maschinen – den sogenannten molekularen Shuttles – mithilfe von molekular-dynamischen Simulationen aufzudecken. Die Studie ist jetzt in der Zeitschrift „Science Advances“ erschienen.

Molekulare Shuttles sind aus hantelförmigen und ringförmigen Molekülen aufgebaut, die durch mechanische Bindungen miteinander verknüpft sind. „Diese mechanische Verknüpfung auf molekularer Ebene führt dazu, dass sich der Ring entlang der Achse von einer Seite auf die andere bewegen kann. Diese gezielte Pendelbewegung wurde bereits genutzt, um molekulare Maschinen zu entwickeln“, erklärt Studienleiter Saeed Amirjalayer. Basierend hierauf arbeiten Wissenschaftler weltweit an einer gezielten Nutzung dieser molekularen Maschinen in Funktionsmaterialien. Metallorganische Gerüstverbindungen, welche modular aus organischen und anorganischen Bausteinen aufgebaut sind, erweisen sich als eine vielversprechende Matrix, um diese mechanisch verzahnten Moleküle in zellartigen Strukturen einzubetten. Obwohl in den vergangenen Jahren eine Reihe dieser Systeme synthetisiert wurde, fehlt meist ein grundlegendes Verständnis der dynamischen Prozesse in diesen Materialien.

„Unsere Studie liefert einen detaillierten Einblick darin, wie die eingebetteten Maschinen funktionieren und zusammenspielen. Gleichzeitig konnten wir Parameter ableiten, die es ermöglichen, die Bewegungsart der molekularen Shuttles innerhalb der metallorganischen Gerüstverbindungen zu variieren“, erklärt Erstautorin Elena Kolodzeiski. Die gezielte Steuerung der Dynamik biete vielsprechende Möglichkeiten, um die Transporteigenschaften von Molekülen in Membranen zu beeinflussen oder katalytische Prozesse abzustimmen. Die Forscher hoffen, dass ihre Simulationen die Grundlage für neuartige Materialien in der katalytischen und medizinischen Anwendung bilden.

Fakten, Hintergründe, Dossiers

Mehr über WWU Münster

  • News

    Forscher zeigen: Chirale Oxid-Katalysatoren richten Elektronenspin aus

    Die Kontrolle des Eigendrehimpulses (Spins) von Elektronen eröffnet künftige Anwendungsszenarien in der spinbasierten Elektronik (Spintronik), beispielsweise zur Informationsverarbeitung. Außerdem bietet sie neue Möglichkeiten, die Selektivität und Effizienz von chemischen Reaktionen zu kon ... mehr

    Biochemiker nutzen neues Werkzeug, um mRNA mit Licht zu kontrollieren

    Die DNA (Desoxyribonukleinsäure) ist ein langes Kettenmolekül, das sich aus vielen einzelnen Bausteinen zusammensetzt und die Grundlage des Lebens auf der Erde bildet. Die Funktion der DNA ist die Speicherung aller Erbinformationen. Die Umsetzung dieser genetischen Informationen in Proteine ... mehr

    Mehr Daten in der Chemie

    Unzählige chemische Experimente sind in Datenbanken zugänglich. Dennoch sind diese Daten nicht gut genug, um mithilfe von künstlicher Intelligenz (KI) und maschinellem Lernen bei neuen Synthesen Produktausbeuten vorherzusagen, hat ein Forschungsteam herausgefunden. Wie das Team in der Zeits ... mehr

  • q&more Artikel

    Löwenzahn als neue Rohstoffquelle für Naturkautschuk

    Mehr als 12.500 Pflanzen produzieren Latex, einen farblosen bis weißen Milchsaft, der unter anderem Naturkautschuk enthält. mehr

  • Autoren

    Prof. Dr. Dirk Prüfer

    Dirk Prüfer, Jahrgang 1963, studierte Biologie an der Universität zu Köln und promovierte am Max-Planck-Institut für Pflanzenzüchtung. Seine Habilitation legte er im Jahr 2004 an der Justus-Liebig-Universität Gießen ab. Seit 2004 ist er Professor für molekulare Pflanzenbiotechnologie am Ins ... mehr

    Prof. Dr. Joachim Jose

    Joachim Jose, geb. 1961, studierte Biologie an der Universität Saarbrücken, wo er promovierte. Die Habilitation erfolgte am Institut für Pharma­zeutische und Medizinische Chemie der Universität des Saarlandes. Von 2004 bis 2011 war Professor für Bioanalytik (C3) an der Heinrich-Heine-Univer ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: