24.06.2022 - Georg-August-Universität Göttingen

Mikroskopietechnik ermöglicht 3D-Bildgebung mit Superauflösung im Nanometermaßstab

Forschungsteam kombiniert zwei Techniken, um isotropes Super-Resolution Imaging zu erreichen

Die Mikroskopie hat in den vergangenen zwei Jahrzehnten beispiellose Fortschritte bei Geschwindigkeit und Auflösung gemacht. Allerdings sind zelluläre Strukturen im Wesentlichen dreidimensional, und herkömmlichen hoch aufgelösten Techniken fehlt oft die notwendige Auflösung in allen drei Richtungen, um Details im Nanometerbereich zu erfassen. Ein Forschungsteam unter der Leitung der Universität Göttingen, an dem auch die Universität Würzburg und das Center for Cancer Research in den USA beteiligt sind, hat nun eine Technik zur superauflösenden Bildgebung untersucht, bei der die Vorteile von zwei verschiedenen Methoden kombiniert werden, um in allen drei Dimensionen die gleiche Auflösung zu erreichen – die „isotrope“ Auflösung. Die Ergebnisse sind in der Fachzeitschrift Science Advances erschienen.

Trotz enormer Verbesserungen in der Mikroskopie gibt es immer noch eine bemerkenswerte Lücke zwischen der Auflösung in allen drei Dimensionen. Eine der Methoden, diese Lücke zu schließen und eine Auflösung im Nanometerbereich zu erreichen, ist die metallinduzierte Energieübertragung (MIET). Die außergewöhnliche Tiefenauflösung der MIET-Bildgebung in Kombination mit der außergewöhnlichen lateralen Auflösung der Einzelmolekül-Lokalisierungsmikroskopie, insbesondere mit einer Methode namens direkte stochastische optische Rekonstruktionsmikroskopie (dSTORM), ermöglicht den Forschenden eine isotrope dreidimensionale Superauflösung von subzellulären Strukturen. Darüber hinaus setzten sie Zweifarben-MIET-dSTORM ein, um zwei verschiedene zelluläre Strukturen dreidimensional abzubilden, zum Beispiel Mikrotubuli und Clathrin-beschichtete Pits – winzige Strukturen innerhalb von Zellen –, die zusammen im selben Bereich existieren.

„Durch die Kombination der etablierten Konzepte haben wir eine neue Technik für die Super-Resolution-Mikroskopie entwickelt. Ihr Hauptvorteil ist, dass sie trotz eines relativ einfachen Aufbaus eine extrem hohe Auflösung in drei Dimensionen ermöglicht“, sagt Erstautor Dr. Jan Christoph Thiele von der Universität Göttingen. „Dies wird ein leistungsfähiges Werkzeug mit zahlreichen Anwendungen sein, um Proteinkomplexe und kleine Organellen mit Sub-Nanometer-Genauigkeit aufzulösen. Jeder, der Zugang zu einem konfokalen Mikroskop mit einem schnellen Laserscanner und der Möglichkeit zur Messung der Fluoreszenzlebensdauer hat, sollte diese Technik ausprobieren“, so Mit-Autor Dr. Oleksii Nevskyi.

„Das Schöne an dieser Technik ist ihre Einfachheit. Das bedeutet, dass Forschende auf der ganzen Welt in der Lage sein werden, diese Technik schnell in ihre Mikroskope zu integrieren“, fügt Prof. Dr. Jörg Enderlein hinzu, der das Forschungsteam am Institut für Biophysik der Universität Göttingen leitete. „Diese Methode verspricht, ein leistungsfähiges Werkzeug für die multiplexe 3D-Superauflösungsmikroskopie mit außergewöhnlich hoher Auflösung und einer Vielzahl von Anwendungen in der Strukturbiologie zu werden.“

Fakten, Hintergründe, Dossiers

  • Superresolution-Mikroskopie
  • Strukturbiologie
  • 3D-Mikroskopie

Mehr über Uni Göttingen

  • News

    Göttinger Forschungsteam entschlüsselt Grundprinzip der Enzymkatalyse

    Aus der Physik und Chemie ist allgemein bekannt, dass sich gleiche Ladungen gegenseitig abstoßen, während sich entgegengesetzte Ladungen anziehen. Man nahm lange Zeit an, dass dieses Prinzip auch gilt, wenn Enzyme – die biologischen Katalysatoren in allen lebenden Organismen – chemische Bin ... mehr

    Genexpression in Mitochondrien gezielt verändern

    Mitochondrien gelten als die Kraftwerke der Zellen, da sie mit Hilfe von Sauerstoff Energie aus unserer Nahrung erzeugen. Die dafür notwendige Maschinerie wird als Atmungskette bezeichnet. Deren zentralen Bausteine werden von Mitochondrien selbst durch die Expression von Genen des ihnen eig ... mehr

    „Tauziehen“ der Zellen – wenn wichtige Verbindungen fehlen

    Die gemeinsame Bewegung von Zellen ist entscheidend für verschiedene biologische Prozesse in unserem Körper – zum Beispiel, damit Wunden heilen und sich der Organismus entwickeln kann. Diese Bewegung wird durch die Verbindungen zwischen einzelnen Zellen ermöglicht. Diese Verbindungen wieder ... mehr

  • Autoren

    Prof. Dr. Gerhard H. Braus

    Gerhard H. Braus, geb. 1957, studierte Biologie und Philosophie an der Albert-Ludwigs-Universität in Freiburg im Breisgau. Promotion (1987) und Habilitation (1992) erfolgten an der Eidgenössischen Technischen Hochschule (ETH) in Zürich. 1993 folgte er einem Ruf auf eine C3-Professur für Bio ... mehr

    Dr. Jennifer Gerke

    Jennifer Gerke, geb. 1982, studierte Chemie an der Georg-August-Universität Göttingen. Ihre Diplomarbeit befasste sich mit der Isolierung und Strukturaufklärung von Sekundärmetaboliten aus marinen Actinomyceten. Anschließend wechselte sie an das Institut für Mikrobiologie und Genetik, wo si ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: