07.06.2022 - Johannes Gutenberg-Universität Mainz

Weiterer Durchbruch auf dem Weg zu einer nachhaltigeren Photochemie gelungen

Forschungsteam realisiert erstmalig effiziente Energieumwandlung mit Chromverbindungen

Nachhaltige chemische Anwendungen müssen erneuerbare Energiequellen, erneuerbare Rohstoffe und reichlich vorhandene Elemente einsetzen können. Bislang funktionieren viele Techniken jedoch nur mit teuren Edelmetallen oder Seltenerdmetallen, deren Gewinnung gravierende Auswirkungen auf die Umwelt haben kann. Einem Forscherteam um Prof. Dr. Katja Heinze und Prof. Dr. Christoph Kerzig von der Johannes Gutenberg-Universität Mainz (JGU) sowie Dr. Ute Resch-Genger von der Bundesanstalt für Materialforschung und -prüfung (BAM) in Berlin ist nun ein Durchbruch bei der Verwendung von Chrom gelungen. Chrom ist ein häufig vorkommendes Nichtedelmetall, mit dem sich Heinzes Arbeitsgruppe schon seit Längerem beschäftigt. Die neuen Erkenntnisse zeigen, dass Chromverbindungen teure Edelmetalle bei der Photonen-Aufwärtskonversion ersetzen können. Dieser Prozess kann beispielsweise die Nutzung von Solarenergie unterstützen. Molekulare Rubine – wie die Chromverbindungen auch genannt werden – können somit dazu beitragen, die Auswirkungen umweltschädlicher Techniken zu verringern und die Photochemie auf nachhaltigere Prozesse auszuweiten.

Chromverbindungen sind eine vielversprechende Alternative

Heutzutage verwenden die meisten photochemischen und photophysikalischen Anwendungen, darunter zum Beispiel phosphoreszierende organische Leuchtdioden, Farbstoffsolarzellen oder lichtgetriebene chemische Reaktionen, Edelmetalle wie Gold, Platin, Ruthenium, Iridium oder Seltenerdmetalle. Edelmetalle sind jedoch teuer, weil sie knapp sind, während Seltene Erden nur in wenigen Ländern, insbesondere in China, abgebaut werden. Außerdem geht der Abbau oft mit einem erheblichen Verbrauch an Wasser, Energie und Chemikalien einher. In einigen Fällen, etwa bei der Gewinnung von Gold, werden sogar hochgiftige Substanzen wie Zyanid oder Quecksilber eingesetzt.

Dagegen sind die Vorkommen von Chrom – der Name des Metalls geht auf das altgriechische Wort für Farbe zurück – in der Erdkruste zehntausend Mal größer als die von Platin und hunderttausend Mal größer als die von Iridium. Chrom ist also in ausreichenden Mengen vorhanden. "Leider sind die photophysikalischen Eigenschaften von häufigen Metallen wie eben Chrom oder Eisen nicht gut genug für die technologischen Anwendungen. Das betrifft vor allem die Lebensdauer und Energie der elektronisch angeregten Zustände", erklärt Katja Heinze, Professorin im Department Chemie der JGU. Erst in den vergangenen Jahren sind hier deutliche Fortschritte erzielt worden, wozu das Team um Heinze maßgeblich beigetragen hat. So war es etwa an der Entwicklung der molekularen Rubine beteiligt. Dabei handelt es sich um lösliche molekulare Verbindungen, die außergewöhnlich gute Eigenschaften im angeregten Zustand besitzen. Molekulare Rubine werden bereits als molekulare optische Thermometer und Drucksensoren eingesetzt.

Direkte Beobachtung der Energietransferprozesse erfolgt mit einem neuen Laser-Großgerät

Dem Team aus Mainz und Berlin ist nun ein weiterer Durchbruch gelungen. "Dabei haben wir einen neuartigen Mechanismus beobachtet und die hohe Effizienz der neuen Chromverbindungen im Detail verstanden", erklärt Prof. Christoph Kerzig. Die Forschenden konnten den ungewöhnlichen Energietransferprozess mit einem Laser-Großgerät, das die Arbeitsgruppe von Kerzig kürzlich in Betrieb genommen hat, direkt beobachten. Gleichzeitig wurde festgestellt, dass es zu keinen Energieverlusten oder Nebenreaktionen kommt. Damit ist der Grundstein für eine effiziente Anwendung der neuartigen Vorgehensweise gelegt, um Sonnenenergie mithilfe von Chromverbindungen zu übertragen und umzuwandeln.

Die Forschung kann damit in Zukunft neue, lichtgetriebene Reaktionen mit dem weitverbreiteten Metall Chrom entwickeln, anstatt die seltenen und teureren Ruthenium- und Iridiumverbindungen zu verwenden, die heute noch am häufigsten zum Einsatz kommen. "Zusammen mit unseren Partnern von der Bundesanstalt für Materialforschung und -prüfung und von anderen Universitäten werden wir unseren Einsatz für eine nachhaltigere Photochemie weiter vorantreiben", betont Prof. Dr. Katja Heinze.

Fakten, Hintergründe, Dossiers

Mehr über Uni Mainz

Mehr über BAM

  • News

    Grüne Chemie: BAM erforscht Arzneimittelproduktion ohne Lösungsmittel und CO₂-Ausstoß

    Die Bundesanstalt für Materialforschung und -prüfung (BAM) entwickelt in einem großen EU-Projekt ein nachhaltigeres Verfahren zur Herstellung pharmazeutischer Wirkstoffe: Das Pilotprojekt soll die Vorteile der Mechanochemie für eine umweltfreundlichere und CO2-neutrale Pharmaproduktion aufz ... mehr

    Neutronenforschung hilft bei der Entwicklung von zerstörungsfreien Prüfverfahren

    Materialermüdung zeigt sich häufig zuerst daran, dass im Innern des Materials Bereiche mit stark unterschiedlichen Eigenspannungen aneinandergrenzen. An der Neutronenquelle BER II am HZB hat ein Team der Bundesanstalt für Materialforschung und -prüfung (BAM) die Eigenspannungen von Schweißn ... mehr

    Wie gut ist die Messmethode?

    Ob Explosion in einem Chemiewerk oder Brand auf einem Gefahrgutfrachter – die Ursachen für Unfälle können vielfältig sein. Prävention beginnt bereits im Prüflabor, wenn Chemikalien auf ihre gefährlichen Eigenschaften getestet werden. Denn auf die richtige Durchführung der Prüfung und Bewert ... mehr

  • q&more Artikel

    Auf dem Weg zum cyber-physical Lab

    Im Allgemeinen sind Laboratorien zentrale Drehscheiben für die chemische, biotechnologische, pharmazeutische oder Lebensmittelproduktion. Sie spielen eine Schlüsselrolle in Forschung und Entwicklung, chemischer Analytik, Qualitätssicherung, Instandhaltung und Prozesskontrolle. mehr

    Das Internet of Things in Labor und Prozess

    Fakt ist: Einen Großteil der Zeit, der an analytischen Laborgeräten verbracht wird, nimmt heute die Systempflege in Anspruch. Der digitale Wandel kann uns endlich wieder mehr Zeit für Kreativität und die eigentliche Laborarbeit geben – wenn wir ihn richtig gestalten. mehr

    Der Fingerabdruck der Kieselalge

    Elementanalytische Verfahren werden heute zu mehr eingesetzt als bloß zur Bestimmung von Metallgesamtgehalten in diversen Probenmatrizes. Sie stellen heute ein wichtiges Werkzeug zur Beantwortung lebenswissenschaftlicher Fragen aus Umwelt, Medizin und Biologie dar. mehr

  • Autoren

    Dr. Michael Maiwald

    Michael Maiwald, Jahrgang 1967, ist Leiter der Fachgruppe Prozessanalytik an der Bundesanstalt für Materialforschung und -prüfung (BAM) in Berlin. Er ist Physikochemiker und schloss 1994 sein Studium an der Ruhr-Universität Bochum ab, wo er ebenfalls promovierte. Im Anschluss leitete er ein ... mehr

    Dr. Björn Meermann

    Björn Meermann, Jahrgang 1982, studierte Chemie an der Universität Münster, wo er 2009 in der Arbeitsgruppe von Prof. Dr. Uwe Karst promovierte. Im Anschluss forschte er während eines knapp zweijährigen Postdoc-Aufenthalts an der Universität Gent, Belgien in der Arbeitsgruppe von Prof. Dr. ... mehr

    Dr. Martina Hedrich

    Martina Hedrich, Jg. 1951, studierte Chemie an der Freien Universität Berlin (FUB) und promovierte in anorganischer Chemie auf dem Gebiet der Röntgenstrukturanalyse. Während ihrer Postdoc-Zeit am Hahn-Meitner-Institut Berlin widmete sie sich der Spurenanalytik in menschlichen Gewebe­proben ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: