23.05.2022 - Max-Planck-Institut für Biochemie

MCM-Moleküle begrenzen die Bildung von DNA-Schleifen

Der Proteinkomplex MCM hat einen unerwarteten Einfluss auf die dreidimensionale Organisation der DNA

Das gesamte genomische Material einer Zelle muss so in einen winzigen Zellkern verpackt werden, dass es einerseits geordnet ist und andererseits je nach Bedarf abgelesen, verdoppelt oder repariert werden kann. Für eine platzsparende Verpackung sind verschiedene Proteine verantwortlich, die die DNA aufrollen oder auch in Schleifen legen können. Die Wissenschaftler Kikuë Tachibana und Karl Duderstadt des Max-Planck-Instituts für Biochemie (MPIB) in Martinsried erforschen die exakte Aufgabe und Funktionsweise dieser molekularen Maschinen. Wie sie herausfinden konnten, spielt der MCM-Komplex eine wichtige Rolle bei der Begrenzung der Schleifenbildung und somit auch bei der dreidimensionalen Struktur des Genoms und der Genregulation. Die Forschungsergebnisse wurden in der Fachzeitschrift Nature veröffentlicht.

Ein DNA-Molekül ist etwa zwei Meter lang und muss trotzdem in einem winzigen Zellkern verpackt werden. Ein Zellkern ist ungefähr so groß wie ein Tonerpartikel eines Druckers oder ein Feinstaubpartikel. Wie funktioniert das? Wie kann die Erbinformation einerseits gespeichert und verpackt, andererseits aber auch abgelesen werden? Wie wird sie in Schleifen gelegt? Auch das Ver- und Entpacken sind dynamische Prozesse, die schnell und reibungslos ablaufen müssen.

Jetzt haben Kikuë Tachibana, neue Direktorin der Abteilung „Totipotenz“ am MPIB und ihr Team entdeckt, dass ein Proteinkomplex, der für seine Funktion bei der DNA-Vervielfältigung bekannt ist, eine unerwartete Rolle bei der Faltung des Genoms spielt. Tachibana erinnert sich: „Während eines Symposiums am MPIB stellte sich heraus, dass mein neuer Kollege Karl Duderstadt und ich ein gemeinsames Interesse teilen. Wir beschlossen, unsere Kräfte zu bündeln, um mit komplementären Ansätzen diese ersten Beobachtungen auf mechanistischer Ebene zu untersuchen.“ Karl Duderstadt ist Leiter der Forschungsgruppe „Struktur und Dynamik molekularer Maschinen“.

In der aktuellen Studie konnten sie nun gemeinsam den Minichromosomen-Erhaltungskomplex (MCM) als eine neue Klasse von Barrieren bei der DNA-Schleifenbildung identifizieren. Bei der Schleifenbildung, auch Schleifenextrusion genannt, sind vor allem drei Proteine bzw. Proteinkomplexe beteiligt: erstens Cohesin, zweitens das Zinkfingerprotein CTCF und drittens der MCM. Der Proteinkomplex Cohesin bindet sich an die DNA und leitet die Bildung einer Schleife ein. Cohesin wickelt dabei die DNA auf, was zu einem progressiven Wachstum der Schleife führt. Die Schleifenbildung wird gestoppt, wenn Cohesin auf das DNA-gebundene Protein CTCF trifft. Vor dieser Arbeit war CTCF die einzige bekannte Barriere für die Schleifenbildung. „Auch wenn sich die Details unterscheiden, kann man sich vorstellen, dass es ein wenig so ist, als würde man einen Ring auf ein Band legen und das Band durch den Ring fädeln, der an der Basis der Schleife verbleibt“, sagt Matthias Scherr, einer der Erstautoren der Studie.

Kikuë Tachibana erklärt: „Im Gegensatz zu CTCF, das eine wirbeltierspezifische Barriere ist, sind MCMs über Eukaryoten und Archaeen hinweg konserviert. Es ist daher faszinierend, dass es sich dabei um eine uralte Barriere für die Schleifenextrusion handeln könnte.“ Die Arbeit eröffnet die Möglichkeit, dass das Zusammentreffen von loop-extrudierenden Cohesin-Komplexen mit MCM-Komplexen Teil eines grundlegenden Mechanismus ist, der die Genomfaltung einer Vielzahl von Lebewesen reguliert.

Karl Duderstadt fasst zusammen: „Unsere Entdeckung war nur durch die Bildung eines internationalen Teams möglich, das über Fachwissen in einem breiten Spektrum von Bereichen verfügt. Diese Arbeit ist ein Beweis dafür, was möglich ist, wenn man Brücken zwischen verschiedenen Bereichen schafft. Ich bin überzeugt, dass wir noch viele weitere Überraschungen erleben werden, wenn wir das Netzwerk von Wechselwirkungen, das die Chromosomenorganisation steuert, noch intensiver erforschen.“

Fakten, Hintergründe, Dossiers

  • Proteine
  • Desoxyribonukleinsäure
  • Proteinkomplexe

Mehr über MPI für Biochemie

  • News

    Neue Methode revolutioniert Krebsdiagnose

    Wie entstehen Krebserkrankungen? Wie verändert die zelluläre Zusammensetzung eines Tumors dessen maligne Eigenschaften? Diese Fragen sind entscheidend, um Krebserkrankungen zu verstehen und um eine dauerhafte Heilung zu finden. Ein deutsch-dänisches Team unter der Leitung von Professor Matt ... mehr

    MaxDIA – Proteomik auf dem nächsten Level

    Die Proteomik produziert enorme Datenmengen, deren Analyse und Interpretation sehr komplex sein kann. Die kostenlose Software-Plattform MaxQuant hat sich in den letzten 13 Jahren als äußerst hilfreich für die Datenanalyse in der Shotgun-Proteomik erwiesen. Nun stellen Jürgen Cox, Gruppenlei ... mehr

    Biologische Maschine produziert ihre eigenen Bauteile

    Die synthetische Biologie will nicht nur Prozesse des Lebens beobachen und beschreiben, sondern auch nachahmen. Ein Schlüsselmerkmal des Lebens ist die Replikationsfähigkeit, also die Selbsterhaltung eines chemischen Systems. Wissenschaftler am Max-Planck-Institut (MPI) für Biochemie in Mar ... mehr

Mehr über Max-Planck-Gesellschaft

  • News

    Grüne Welle für „Gen-Taxis“

    Viren helfen Forschenden dabei, Gene in Zellen zu schleusen – damit diese beispielsweise pharmazeutische Wirkstoffe herstellen. Spezielle Peptide kurbeln den Vorgang an. Verstanden allerdings war die Effizienzsteigerung bislang kaum. Ein Forscherteam des MPI für Polymerforschung, der Univer ... mehr

    Mikropartikel mit Gefühl

    Ein internationales Forschungsteam unter Leitung des Bremer Max-Planck-Instituts für Marine Mikrobiologie, der Universität Aarhus und des Science for Life Institute in Uppsala hat winzige Partikel entwickelt, die den Sauerstoffgehalt in ihrer Umgebung anzeigen. So schlagen sie zwei Fliegen ... mehr

    Neue Methode revolutioniert Krebsdiagnose

    Wie entstehen Krebserkrankungen? Wie verändert die zelluläre Zusammensetzung eines Tumors dessen maligne Eigenschaften? Diese Fragen sind entscheidend, um Krebserkrankungen zu verstehen und um eine dauerhafte Heilung zu finden. Ein deutsch-dänisches Team unter der Leitung von Professor Matt ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: