17.05.2022 - Max-Planck-Institut für molekulare Physiologie

Struktur eines Schlüsselproteins für die Zellteilung gibt Rätsel auf

Forschende liefern einen ersten 3D-Schnappschuss des CCAN-Proteinkomplexes und werfen grundlegende Fragen zur Herstellung künstlicher Chromosomen auf

An der menschlichen Zellteilung sind Hunderte von Proteinen beteiligt. Mit Kenntnis der 3D-Struktur dieser Proteine können wir verstehen, wie unser genetisches Material dupliziert und über Generationen hinweg weitergegeben wird. Die Gruppen um Andrea Musacchio und Stefan Raunser am Max-Planck-Institut für molekulare Physiologie in Dortmund konnten nun die erste detaillierte Struktur eines Schlüsselproteinkomplexes für die menschliche Zellteilung, auch CCAN genannt, aufdecken. Mit Hilfe der Kryo-Elektronenmikroskopie zeigen die Forschenden wichtige Merkmale der 16 Komponenten des Komplexes und stellen bisherige Annahmen über die Bindung des Komplex an das Zentromer auf dem Chromosom in Frage.

Im Zentrum der Zellteilung

Das Zentromer ist eine Einschnürung im Chromosom, die aus DNA und Proteinen besteht. Vor allem aber ist das Zentromer die Andockstelle für das Kinetochor, eine Maschinerie aus etwa 100 Proteinen, die bei der Zellteilung die Trennung zweier identischer Chromosomen und deren Weitergabe an die Tochterzellen steuert. Vorherige Forschungsarbeiten haben gezeigt, dass das Kinetochor über den CCAN-Komplex an das Zentromer andockt: CCAN interagiert dabei mit dem Zentromerprotein A, das Schlüsselprotein des Zentromers. CCAN ist auch dafür verantwortlich, das Zentromerprotein A nach der Zellteilung wieder zu regenerieren. Die Einzelheiten der Interaktion zwischen CCAN und dem Zentromerprotein A sind jedoch noch nicht bekannt. "Wenn wir verstehen, wie CCAN das Zentromer erkennt und es bindet, könnten wir möglicherweise ein Zentromer von Grund auf neu bauen", sagt Musacchio. Das Zentromer stellt eine große Hürde für synthetische Biologen dar, die künstliche Chromosomen entwickeln wollen, um fehlende Funktionen wiederherzustellen oder neue Funktionen in Zellen einzuführen.

Ungelöste Fragen im Zellkern

Forschende entdeckten den CCAN-Komplex vor über 15 Jahren. „Der Aufbau einer Produktionsstraße zur Synthese aller Proteine in vitro war jedoch ein großes Hindernis“, sagt Musacchio. Nachdem er eine erste Rekonstitution des menschlichen CCAN-Komplexes in vitro erreicht hatte, schloss er sich mit Stefan Raunser, ebenfalls am MPI Dortmund, zusammen, der den gesamten CCAN-Proteinkomplex mit Hilfe der Kryo-Elektronenmikroskopie untersucht hat.

In der neuen Publikation konnten die beiden MPI-Gruppen die strukturellen Details des menschlichen CCAN-Komplexes bestimmen und seine einzigartigen Eigenschaften und die Auswirkungen auf die Interaktion mit dem Zentromerprotein A aufzeigen. "Entgegen den Erwartungen erkennt diese Struktur das Zentromerprotein A nicht direkt in der Standardkonfiguration", sagt Musacchio. Das Zentromerprotein A ist üblicherweise mit der DNA und anderen Proteinen als Nukleosom verpackt, der Standardeinheit des genetischen Materials. Die Autoren vermuten nun, dass das Zentromerprotein A in einer anderen Konfiguration in das Zentromer eingebettet sein könnte, die die entscheidende Interaktion mit CCAN möglicherweise erleichtert. Als nächstes planen sie die Bedingungen zu ermitteln, die zu dieser neuen Konfiguration führen könnten, und ihre Hypothese zu beweisen.

Fakten, Hintergründe, Dossiers

  • Zellteilung
  • Proteine
  • Proteinkomplexe
  • Kryo-Elektronenmikroskopie
  • Zentromere
  • Proteinsynthese

Mehr über MPI für molekulare Physiologie

  • News

    Eine neue Ebene der Signalübertragung in Stammzellen

    Teilen, differenzieren oder sterben?  Wann und wo Zellen Entscheidungen treffen, bestimmt ihr Verhalten und ist besonders wichtig für die Stammzellen eines sich entwickelnden Organismus. Dabei hängt die Entscheidungsfindung davon ab, wie Informationen durch Netzwerke von Signalproteinen ver ... mehr

    Coole Mikroskopie: Das Unsichtbare wird sichtbar

    Die Fluoreszenzmikroskopie bietet die einzigartige Möglichkeit, zelluläre Prozesse über vier Größenordnungen hinweg zu beobachten. Ihre Anwendung in lebenden Zellen wird jedoch durch sehr schnelle und unaufhörliche Molekularbewegungen und durch die licht-induzierte Zerstörung der Fluoreszen ... mehr

    Stammzellen würfeln nicht (nur)

    Aus einer befruchteten Eizelle entsteht in nur wenigen Wochen ein komplett neuer Organismus. Das eigentliche Wunder dabei ist, dass aus einem kleinen Haufen vollkommen identischer Stammzellen ganz unterschiedliche, spezialisierte Zelltypen werden. Das Team um Christian Schröter, Gruppenleit ... mehr

Mehr über Max-Planck-Gesellschaft

  • News

    Grüne Welle für „Gen-Taxis“

    Viren helfen Forschenden dabei, Gene in Zellen zu schleusen – damit diese beispielsweise pharmazeutische Wirkstoffe herstellen. Spezielle Peptide kurbeln den Vorgang an. Verstanden allerdings war die Effizienzsteigerung bislang kaum. Ein Forscherteam des MPI für Polymerforschung, der Univer ... mehr

    Mikropartikel mit Gefühl

    Ein internationales Forschungsteam unter Leitung des Bremer Max-Planck-Instituts für Marine Mikrobiologie, der Universität Aarhus und des Science for Life Institute in Uppsala hat winzige Partikel entwickelt, die den Sauerstoffgehalt in ihrer Umgebung anzeigen. So schlagen sie zwei Fliegen ... mehr

    Neue Methode revolutioniert Krebsdiagnose

    Wie entstehen Krebserkrankungen? Wie verändert die zelluläre Zusammensetzung eines Tumors dessen maligne Eigenschaften? Diese Fragen sind entscheidend, um Krebserkrankungen zu verstehen und um eine dauerhafte Heilung zu finden. Ein deutsch-dänisches Team unter der Leitung von Professor Matt ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: