08.04.2022 - Max-Planck-Institut für biologische Intelligenz

Die dunkle Materie des Gehirns

Omnipräsent und doch kaum erforscht: Elektrische Synapsen

Sie finden sich im Gehirn fast jeder Tierart, doch selbst unter dem Elektronenmikroskop bleiben sie meist unsichtbar. „Elektrische Synapsen sind wie die dunkle Materie des Gehirns“, sagt Alexander Borst, Direktor am MPI für biologische Intelligenz, in Gründung (i.G). Nun hat ein Team seiner Abteilung diese wenig erforschte Komponente genauer untersucht: Im Gehirn der Fruchtfliege Drosophila konnten sie zeigen, dass elektrische Synapsen in fast allen Bereichen des Gehirns vorkommen und einzelne Nervenzellen in ihrer Funktion und Stabilität beeinflussen.

Nervenzellen kommunizieren über Synapsen: kleine Kontaktpunkte, an denen über chemische Botenstoffe ein Signal von einer Zelle zur nächsten weitergegeben wird. Das wissen wir vielleicht noch aus dem Biologieunterricht. Doch das ist nicht die ganze Geschichte. Neben den allgemein bekannten chemischen Synapsen gibt es noch einen zweiten, kaum bekannten Synapsentyp: die elektrische Synapse.

„Elektrische Synapsen sind deutlich seltener und mit den gängigen Methoden schwer zu erkennen. Daher sind sie bisher wenig erforscht“, erklärt Georg Ammer, den diese verborgenen Zellverbindungen schon lange faszinieren. „In den meisten Gehirnen wissen wir daher selbst grundlegende Dinge nicht, wie zum Beispiel wo genau elektrische Synapsen vorkommen oder wie sie die Gehirnaktivität beeinflussen.“ 

Eine elektrische Synapse verbindet zwei Nervenzellen direkt miteinander, sodass das elektrische Signal ohne Umweg von einer Zelle zur nächsten fließen kann. Außer bei Stachelhäutern kommt diese besondere Synapsenart im Gehirn jeder darauf untersuchten Tierart vor. „Elektrische Synapsen müssen daher wichtige Funktionen haben: wir wissen nur nicht welche!“, so Georg Ammer.

Um diesen Funktionen auf die Spur zu kommen, haben Ammer und seine beiden Kolleginnen, Renée Vieira und Sandra Fendl, einen wichtigen Protein-Baustein elektrischer Synapsen markiert. So konnten sie im Gehirn von Fruchtfliegen zeigen, dass elektrische Synapsen nicht in allen Nervenzellen vorkommen, dafür aber in fast allen Bereichen des Gehirns.

Durch das gezielte Ausschalten elektrischer Synapsen im Areal der visuellen Verarbeitung konnten die Wissenschaftler*innen zeigen, dass die betroffenen Nervenzellen auf bestimmte Reize stark abgeschwächt reagieren. Auch wurden einzelne Nervenzelltypen ohne elektrische Synapsen instabil und fingen an, spontan zu oszillieren.

„Die Ergebnisse lassen vermuten, dass elektrische Synapsen für sehr viele verschiedene Hirnfunktionen wichtig sind und je nach Nervenzelltyp ganz unterschiedliche Aufgaben haben können“, so Ammer. „Diese Synapsen sollten daher möglichst auch bei Konnektom-Untersuchungen berücksichtigt werden.“ Als "Konnektom" wird der vollständige Schaltplan aller Nervenzellen und ihrer Verbindungen im Gehirn oder einem Hirnbereich bezeichnet. Häufig werden diese Informationen aus Aufnahmen aus dem Elektronenmikroskop rekonstruiert – wo elektrische Synapsen meist unsichtbar sind. Wie sich diese gemeinsam mit den chemischen Synapsen in vollständigen Schaltplänen integrieren lassen und welche Geheimnisse elektrische Synapsen vielleicht sonst noch verbergen, müssen weitere Studien zeigen.

Fakten, Hintergründe, Dossiers

  • Gehirn
  • Synapsen
  • Nervenzellen
  • elektrische Synapsen

Mehr über Max-Planck-Gesellschaft

  • News

    Ein neues Mikroskop beleuchtet die Funktionsweise von Nervenzellen tief im Gehirn

    Wie finden wir heraus, was in Nervenzellen tief im Gehirn vor sich geht, während ein Tier aktiv ist? Forschende des Max-Planck-Instituts für Neurobiologie des Verhaltens – caesar (MPINB) haben ein Miniatur-Mikroskop entwickelt, das Mäuse auf dem Kopf tragen können, während sie sich uneinges ... mehr

    Organentwicklung messen

    Ein Forscherteam aus Dresden und Wien entdeckt Zusammenhang zwischen der Verbindung dreidimensionaler Gewebestrukturen und der Entstehung ihrer Architektur. Das ermöglicht selbstorganisierende Gewebe zu entwickeln, die menschliche Organe simulieren. Die Organe im menschlichen Körper bestehe ... mehr

    Zurück in die Zukunft der Photosynthese

    Das zentrale Enzym der Photosynthese, Rubisco, ist das häufigste der Erde. Aber wie entwickelte sich Rubisco, und wie passte es sich den Veränderungen im Laufe der Erdgeschichte an? Durch Rekonstruktion von Milliarden Jahre alten Enzymen gelang es Forschern des Max-Planck-Instituts für terr ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: