18.03.2022 - Albert-Ludwigs-Universität Freiburg

Komplexe Wege beeinflussen Zeitverzögerung in der Ionisation von Molekülen

Studie zeigt, wie mit dem Mechanismus der Photoionisation Einblicke in komplexe molekulare Potenziale gewonnen werden

Wie können Wissenschaftler*innen den Mechanismus der Photoionisation nutzen, um Einblicke in komplexe molekulare Potentiale zu gewinnen? Diese Frage hat ein Team um Prof. Dr. Giuseppe Sansone vom Physikalischen Institut der Universität Freiburg nun beantworten können. Ihre Ergebnisse haben die Forschenden aus Freiburg, dem Max-Planck-Institut für Kernphysik Heidelberg sowie aus Arbeitsgruppen an der Universidad Autonoma in Madrid/Spanien und der Universität Triest/Italien in der Zeitschrift Nature Communications veröffentlicht.

Bei dem Ursprung der Photoionisation, auch photoelektrischer Effekt genannt, absorbiert ein Atom oder ein Molekül ein Lichtquant, gewöhnlich als Photon bezeichnet, aus einem äußeren Feld. Die dabei absorbierte Energie wird auf ein Elektron übertragen, das freigesetzt wird und ein einfach geladenes Ion zurücklässt. Unter verschiedenen Gesichtspunkten und für verschiedene Anwendungen kann der Effekt als unmittelbar angesehen werden, es gibt also keine nennenswerte Zeitverzögerung zwischen der Absorption des Photons und dem Zeitpunkt, zu dem das Elektron emittiert wird. Mehrere in den letzten Jahren durchgeführte Experimente haben jedoch gezeigt, dass zwischen diesen beiden Prozessen winzige, aber messbare Verzögerungen im Attosekundenbereich (1 as=10-18 s) auftreten.

Erzeugung von attosekunden Lichtblitzen

„Dank der fortschrittlichen Laserquellen und der speziell entwickelten Spektrometer, die in unserem Labor zur Verfügung stehen, können wir extrem kurze Lichtblitze erzeugen, die nur wenige hundert Attosekunden dauern“, erklärt Sansone. „Außerdem können wir die Ausrichtung einfacher Moleküle rekonstruieren, wenn sie ein Photon aus einem externen Laserpuls absorbieren. Wir haben solche Pulse verwendet, um die Bewegung der Elektronen nach der Absorption eines Photons zu untersuchen.“

Elektrone durchlaufen Wege mit Potenzialspitzen und -tälern

Dabei fanden die Forschenden heraus, dass das Elektron auf seinem Weg aus dem Molekül heraus eine komplexe Landschaft durchläuft, die von Potenzialspitzen und -tälern geprägt ist. Diese werden von der räumlichen Verteilung der Atome, aus denen das System besteht, bestimmt. Der Weg, den das Elektron während seiner Bewegung zurücklegt, kann die Zeit beeinflussen, die es braucht, um wieder frei zu werden.

Ausweitung auf komplexere molekulare Systeme möglich

In dem Experiment hat das Team um Sansone die Zeitverzögerungen gemessen, die die von den CF4-Molekülen in verschiedenen räumlichen Richtungen emittierten Elektronen mit Hilfe eines Attosekunden-Pulszugs in Kombination mit einem ultrakurzen Infrarotfeld aufholen. „Durch die Kombination dieser Informationen mit der Charakterisierung der räumlichen Ausrichtung des Moleküls können wir verstehen, wie die Potenziallandschaft und insbesondere die Potenzialspitzen die Zeitverzögerung beeinflussen", sagt der Freiburger Physiker.

Die Arbeit kann auf komplexere molekulare Systeme und auf Potenziale, die sich auf ultrakurzen Zeitskalen ändern, ausgeweitet werden. Generell biete dieser Ansatz die Möglichkeit, betont Sansone, komplexe Potenziallandschaften von innen heraus mit einer noch nie dagewesenen zeitlichen Auflösung abzubilden.

Fakten, Hintergründe, Dossiers

  • Photoionisation
  • photoelektrischer Effekt
  • Atome
  • Moleküle
  • Photonen
  • Elektronen
  • Ionen

Mehr über Uni Freiburg

  • News

    Eine molekulare Maschine bei der Arbeit

    Das Treibhausgas Distickstoffmonoxid (N2O) entsteht als Nebenprodukt industrieller Prozesse und durch den Einsatz von Düngemitteln in der Landwirtschaft. Es leistet einen stetig wachsenden Beitrag zum Klimawandel und zum Abbau der Ozonschicht. Dabei ist es chemisch so unreaktiv, dass es für ... mehr

    Neue Erkenntnisse zur Entstehung des Immunsystems im Gehirn

    Was ins Gehirn gelangt und was nicht, wird streng kontrolliert. Forscher*innen der Medizinischen Fakultät der Universität Freiburg haben jetzt Fresszellen untersucht, die die Blutgefäße im Gehirn ummanteln und die Blut-Hirn-Schranke verstärken. Wie die Wissenschaftler*innen vom Institut für ... mehr

    Lungengewebe aus dem Labor

    Laboruntersuchungen an Lungengewebe erforderten bisher meist die Entnahme größerer Mengen menschlichen oder tierischen Gewebes. Nun ist es Wissenschaftler*innen der Medizinischen Fakultät der Universität Freiburg gemeinsam mit amerikanischen Forschenden gelungen, aus wenigen Körperzellen im ... mehr

  • q&more Artikel

    Modulare Biofabriken auf Zellebene

    Der „gebürtige Bioorganiker“ hatte sich bei seiner Vorliebe für komplexe Molekülarchitekturen nie die klassische Einteilung von synthetischen Polymeren und biologischen Makromolekülen zu eigen gemacht. Moleküle sind nun mal aus Atomen zusammengesetzt, die einen wie die anderen, warum da ein ... mehr

    Lesezeichen

    Aus einer pluripotenten Stammzelle kann sowohl eine Muskel- als auch eine Leberzelle entstehen, die trotz ihres unterschiedlichen Erscheinungsbildes genetisch identisch sind. Aus ein und demselben ­Genotyp können also verschiedene Phänotypen entstehen – die Epigenetik macht es möglich! Sie ... mehr

  • Autoren

    Dr. Stefan Schiller

    Stefan M. Schiller, Jg. 1971, studierte Chemie mit Schwerpunkt Makromolekulare und Biochemie in Gießen, Mainz und an der University of Massachusetts. Er promovierte bis 2003 am Max-Planck-Institut für Polymerforschung in Mainz über biomimetische Membransysteme, es folgten Forschungsaufentha ... mehr

    Julia M. Wagner

    Julia M. Wagner studierte Pharmazie in Freiburg (Approbation 2008). Seit 2008 ist sie Doktorandin und wissenschaftliche Mitarbeiterin im Arbeitskreis von Professor Dr. M. Jung. In ihrer Forschung beschäftigt sie sich mit der zellulären Wirkung von Histon-Desacetylase-Inhibitoren. mehr

    Prof. Dr. Manfred Jung

    Manfred Jung hat an der Universität Marburg Pharmazie studiert (Approbation 1990) und wurde dort in pharmazeutischer Chemie bei W. Hanefeld promoviert. Nach einem Postdoktorat an der Universität Ottawa, Kanada begann er 1994 am Institut für Pharmazeutische Chemie der Universität Münster mit ... mehr

Mehr über MPI für Kernphysik

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: