14.02.2022 - Universität Hamburg

Nanopartikel-basierte Aerogele aus dem 3D-Drucker

Leicht, stabil und funktional: Materialklasse eröffnet vielseitige Anwendungen in der Katalyse, Energiespeicherung oder Sensorik

Ein Forschungsteam von der Universität Hamburg und DESY hat ein neues Verfahren entwickelt, mit welchem kolloidale Nanomaterialien in Form eines sogenannten Aerogels in 3D geduckt werden können. Diese Materialklasse zeichnet sich durch eine außergewöhnlich hohe Porosität aus und eröffnet vielseitige Anwendungen in der Katalyse, Energiespeicherung oder Sensorik. Im Fachmagazin Advanced Functional Materials berichten die Forschenden, wie der 3D-Druck durch eine raffinierte Behandlung während des Verfahrens möglich wurde.

Aerogele sind makroskopische Feststoffe und bestehen abseits eines dreidimensionalen Nanopartikel-Netzwerks fast ausschließlich aus luftgefüllten Nanoporen. Durch die schwammartige, nanoporöse Struktur weist das Material eine außergewöhnlich hohe Oberfläche auf und kann abhängig von der Zusammensetzung des nanoskopischen Netzwerks mit unterschiedlichen funktionalen Eigenschaften ausgestattet werden. Diese Charakteristik macht Aerogele sehr vielversprechend für die Wärmedämmung aber auch für Anwendungen, bei denen chemische Reaktionen auf der Oberfläche der Nanopartikel durchgeführt werden müssen, wie zum Beispiel in der Katalyse, Energiespeicherung oder Sensorik.

„Bislang ließen sich Flüssigkeiten mit darin enthaltenen Nanopartikeln aber nur über ein Gießverfahren in ein festes Aerogel prozessieren“, sagt Matthias Rebber, der Erstautor der Studie, die auch vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ und dem Graduiertenkolleg NANOHYBRID der Universität Hamburg unterstützt wurde. Der Nachteil des Gießverfahrens ist, dass sich das Gel nicht zuverlässig aus der Gussform entfernen lässt, was zu hohen Ausschussraten in der Produktion führt und nur simple Geometrien erlaubt.

Beim 3D-Druck wird diese Form nicht mehr benötigt. Die Forschenden nutzten gelartige Tinten auf Basis von TiO2 Nanopartikeln und drückten diese mit Hilfe einer Spritzenpumpe durch die feinen Drucknadeln eines 3D-Druckers. „Eine der großen Herausforderungen war es das filigrane Nanopartikel-Netzwerk während des gesamten Prozesses aufrechtzuerhalten,“ erklärt Dorota Koziej, Professorin am Center for Hybrid Nanostructures (CHyN) an der Universität Hamburg und Forscherin im Exzellenzcluster. Bei einem gewöhnlichen Druck an Raumluft trocknen die dünnen Fäden bereits innerhalb weniger Sekunden, wodurch das nanoporöse Netzwerk kollabiert. Die Forschenden suchten daher nach einem neuen Weg, wie sich das Aerogel aus TiO2 Nanopartikeln mit dem 3D-Druck vereinen lässt. Die Lösung besteht in einem Flüssigkeitsbad, welches als Medium für die gelartige Tinte während des 3D-Drucks dient und eine Beschädigung des nanoporösen Netzwerks durch eine Trocknung an Luft verhindert. Darüber hinaus enthält die Flüssigkeit ein Gelierungsmittel, welches die sehr weiche Tinte nach dem Druck aushärtet und so auch komplexe Druckgeometrien zulässt.

Diese komplexen Geometrien sind der entscheidende Vorteil des 3D-Drucks gegenüber bereits etablierten Gießverfahren. „Eine hierarchische Architektur, welche alle Längen auf der Nano-, Mikro- und Makroskala umfasst, ist entscheidend, um die maximale Effizienz des Aerogels in der späteren Anwendung herauszuholen“, sagt Dorota Koziej. Um dies zu demonstrieren, beluden die Forschenden das TiO2 Aerogel zusätzlich mit Goldnanostäbchen. Dieses Material kann durch eine plasmonische Anregung Licht effizient in Wärme umwandeln, um beispielsweise katalytische Reaktionen zu beschleunigen. „Wir können durch den 3D Druck nun die Wechselwirkung mit dem Licht gezielt steuern und zum Beispiel die Eindringtiefe in das Material gegenüber unstrukturierten Materialien vervierfachen,“ ergänzt Matthias Rebber.

Dieses Experiment diente den Forschenden vor allem als Machbarkeitsstudie, dass funktionelle Eigenschaften wie das photothermale Heizen der Goldnanostäbchen durch den 3D-Druck strukturiert werden können. In einem nächsten Schritt soll das Konzept auf weitere Materialkombinationen erweitert werden. „Nanomaterialien sind für ihre außergewöhnlichen elektrischen, optischen oder auch magnetischen Eigenschaften bekannt. Diese können wir während der Synthese in unserem Labor gezielt einstellen und so an die Anwendung als Katalysator, Batterie oder Sensor anpassen“, sagt Dorota Koziej. Sinnvolle und anwendbare Kombinationen herauszufinden, ist ein Ziel für weitere Arbeiten des Forschungsprojekts. Matthias Rebber ist zuversichtlich, dass dies gelingen wird. „Das Schöne an unserem Druckverfahren ist das Baukastenprinzip in der Tintenformulierung. Wir nutzen die TiO2 Nanopartikel als Grundgerüst und können bereits heute dieses Netzwerk mit einer großen Palette an Nanomaterialien beladen. Aufgrund des nanoporösen Grundgerüsts erhalten wir ein Material, das nicht nur leicht und stabil ist, sondern darüber hinaus je nach Materialkombination auch unterschiedliche funktionale Eigenschaften aufweisen kann.“ Neben TiO2 lässt sich das Aerogel-Grundgerüst prinzipiell aus allen kolloidalen Nanopartikeln herstellen. „Wenn wir es schaffen dieses Konzept auch auf weitere Materialienklassen zu übertragen, sind der Kreativität und der späteren Anwendung unseres Druckverfahrens keine Grenzen gesetzt.“

Fakten, Hintergründe, Dossiers

Mehr über Uni Hamburg

  • News

    AIMe – Ein Standard für Künstliche Intelligenz in der Biomedizin

    Ein internationales Forschungsteam mit Beteiligten mehrerer Universitäten hat ein standardisiertes Register für die Arbeit mit Künstlicher Intelligenz (KI) in der Biomedizin vorgeschlagen, um die Reproduzierbarkeit der Ergebnisse zu verbessern und Vertrauen in die Benutzung von KI-Algorithm ... mehr

    „Den unsichtbaren Feind sichtbar machen“

    Die Bekämpfung des Coronavirus hat die Zusammenarbeit der Wissenschaftscommunity weltweit in hohem Maß verändert und intensiviert. An der Universität Hamburg leitet Dr. Andrea Thorn eine internationale Forschungsgruppe, die Molekülmodelle des Virus aus der ganzen Welt verbessert, um die Ent ... mehr

    Neue Materialklasse entwickelt

    Ein Forschungsteam von der Universität Hamburg und der Swansea University hat halbleitende Eigenschaften in einem Film von Nanoclustern aus 25 Goldatomen beobachtet. Diese Entdeckung könnte den Weg für eine Reihe neuer Anwendungen ebnen, von Fotodetektoren bis hin zu Leuchtdioden und Solarz ... mehr

  • Autoren

    Prof. Dr. Markus Fischer

    Jg. 1965, studierte Lebensmittelchemie an der Technischen Universität München und promovierte 1997 im Bereich Molekularbiologie/Proteinchemie. 2003 habilitierte er sich für die Fächer Lebensmittelchemie und Biochemie. Seit 2006 ist er Direktor des Instituts für Lebensmittelchemie der Univer ... mehr

    Luise Herrmann

    Jg. 1983, studierte bis 2010 Lebensmittelchemie an der Universität ­Hamburg. In ihrer Diplomarbeit beschäftigte sie sich mit der Differenzierung von Weizen und Dinkel über deren Proteinmuster. Nach dem Studium absolvierte sie ihr praktisches Jahr teils in Nantes, Frankreich und in Hamburg. ... mehr

    Dr. Anke Heisig

    Anke Heisig, geb. 1961, studierte Biologie mit dem Schwerpunkt Molekularbiologie an der FU Berlin und promovierte am Max-Planck-Institut für Molekulare Genetik in Berlin-Dahlem. Seit 1998 leitet sie einen DNA-Sequenzierservice zunächst an der Universität Bonn. Nach ihrer Tätigkeit bei der F ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: