05.01.2022 - Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie IME

Spinnengift für Therapeutika und Bioinsektizide

Zahlreiche neuartige Biomoleküle aus dem Gift der Wespenspinne identifiziert

Bis zu 3000 Komponenten kann das Gift einer einzigen Spinne enthalten. Aus den Bestandteilen, meist Peptiden, lassen sich vielversprechende Wirkstoffkandidaten für die Behandlung von Krankheiten entwickeln. Auch in der Schädlingsbekämpfung kann Spinnengift eingesetzt werden – als biologisches Pflanzenschutzmittel. Ein Forscherteam des Fraunhofer-Instituts für Molekularbiologie und Angewandte Oekologie IME und der Justus-Liebig-Universität Gießen widmet sich vor allem den bisher kaum beachteten einheimischen Spinnen und ihrem Giftmix. Die Forschungsergebnisse zur Biologie der Toxine – insbesondere zum Gift der Wespenspinne – wurden in Fachzeitschriften veröffentlicht.

Spinnen bereiten vielen Menschen ein gewisses Unbehagen, manche haben sogar Angst vor den Achtbeinern. Am Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie IME in Gießen sind sie hingegen willkommen. Hier forscht der Biochemiker Dr. Tim Lüddecke mit seinem Team an Spinnentoxinen. »Spinnengifte sind eine weitgehend unerschlossene Ressource, dies liegt unter anderem an der schieren Vielfalt – etwa 50.000 Arten sind bekannt. Im Spinnengift steckt viel Potenzial für die Medizin, etwa bei der Erforschung von Krankheitsmechanismen«, sagt der Leiter der neuen Arbeitsgruppe »Animal Venomics«.

So kann im Labor untersucht werden, wie einzelne Toxine auf Schmerzrezeptoren von Nervenzellen wirken. Besonders vielversprechend ist der Giftcocktail der Australischen Trichternetzspinne. Man geht davon aus, dass sich damit neuronale Schäden nach Schlaganfällen behandeln und Herzen für Organtransplantationen länger haltbar machen lassen. Andere Wirkstoffkandidaten sind interessant für die Anwendung als Antibiotikum oder als Schmerzmittel. »Es handelt sich um ein sehr junges Forschungsfeld. Die Substanzen sind zwar entdeckt und beschrieben, sie befinden sich aber noch nicht in der Präklinik«, so Lüddecke. Anders sieht es bei der Pestizidforschung aus. Spinnen betäuben Insekten mit ihrem Gift und fressen sie anschließend. Da die Toxine sehr wirksam gegen Insekten sind, bieten sie eine gute Grundlage für Biopestizide, sie eignen sich für die Schädlingsbekämpfung von Nutzpflanzen.

Die Forschung konzentrierte sich bislang auf die Gifte der sehr großen oder potenziell gefährlichen Arten, die in den Tropen leben. Die einheimischen, kleinen und harmlosen Spinnen standen nicht im Fokus. »Die meisten Spinnen in Mitteleuropa sind maximal zwei Zentimeter groß, ihre Giftmenge reichte für Experimente nicht aus. Doch inzwischen verfügen wir über präzise Analysemethoden, um auch die geringen Mengen der bisher vernachlässigten Mehrheit der Spinnen untersuchen zu können«, erläutert Lüddecke. Diesen Arten widmet sich die Arbeitsgruppe am Gießener Institutsteil Bioressourcen des Fraunhofer IME im Rahmen eines Forschungsprojekts. Dabei arbeiten sie unter anderem mit Forscherteams der Justus-Liebig-Universität Gießen zusammen. Gefördert wird die Arbeit durch das das LOEWE-Zentrum für Translationale Biodiversitätsgenomik (LOEWE-TBG) in Frankfurt am Main.

Besonderes Augenmerk der Wissenschaftlerinnen und Wissenschaftler gilt der Wespenspinne (Argiope bruennichi), die ihren Namen ihrer auffällig wespenähnlichen Färbung verdankt. Es ist ihnen gelungen, ihr Gift zu entschlüsseln, wobei sie zahlreiche neuartige Biomoleküle identifizierten. Die Forschungsergebnisse wurden in der Fachzeitschrift »Biomolecules« veröffentlicht.

Neue Biomoleküle aus dem Gift der Wespenspinne

Spinnengifte sind hochkomplex, sie können bis zu maximal 3000 Komponenten enthalten. Das Gift der Wespenspinne hingegen enthält nur etwa 53 Biomoleküle. Es ist stark von hochmolekularen Bestandteilen dominiert, dazu gehören sogenannte CAP-Proteine und andere Enzyme. Wie in anderen Spinnengiften sind Knottine vorhanden – allerdings machen diese nur einen geringen Teil des gesamten Gemischs aus.

Knottine stellen eine Gruppe von neurotoxischen Peptiden dar, die aufgrund ihrer Knotenstruktur robust gegenüber chemischem, enzymatischem und thermischem Abbau sind. Man könnte diese Moleküle daher als Bestandteil von Medikamenten oral verabreichen, ohne dass sie im Magen-Darmtrakt verdaut werden. Sie können ihre Wirkung daher sehr gut entfalten, weshalb sie großes Potenzial für die Medizin bieten. Darüber hinaus binden Knottine spezifisch an Ionenkanäle. »Je spezifischer ein Molekül an sein Zielmolekül andockt, nur einen einzigen Typ von Ionenkanal angreift, desto weniger Nebenwirkungen löst es aus«, erklärt Lüddecke. Zudem beeinflussen die Knottine schon in geringen Mengen die Aktivität der Ionenkanäle, sprich, sie sind in geringer Konzentration wirksam. Infolgedessen können abgeleitete Arzneien niedrig dosiert verabreicht werden. Die Kombination dieser Eigenschaften machen Spinnengifte so interessant für die Wissenschaft.

Auch entdeckten die Projektpartner im Gift der Wespenspinne Moleküle, die in ihrer Struktur Neuropeptiden ähneln, die für den Transport von Informationen zwischen den Nervenzellen verantwortlich sind. »Wir haben neuartige Familien von Neuropeptiden gefunden, die wir bislang von anderen Spinnen nicht kennen. Wir vermuten, dass die Wespenspinne damit das Nervensystem von Insekten angreift. Seit Längerem ist bekannt, dass Neuropeptide im Tierreich im Laufe der Evolution häufig zu Toxinen umgebaut werden«, sagt der Forscher.

Giftstoffe im Labor vervielfältigen

Da die Giftausbeute bei kleinen Spinnen gering ausfällt, entnehmen die Forscherinnen und Forscher die Giftdrüsen und sequenzieren daraus die mRNA. Aufgrund der Genstruktur lassen sich die Toxine entschlüsseln. Das Giftprofil der Wespenspinne liegt inzwischen vollständig vor, im nächsten Schritt werden die relevanten Komponenten hergestellt. Hierfür wird die Gensequenz mittels Biotechnologie in eine Bakterienzelle eingebaut, die dann das Toxin produziert. »Wir bauen quasi genetisch modifizierte Bakterien, die das Toxin in großem Maßstab herstellen.« Die Hauptkomponente des Wespenspinnengifts, das CAP-Protein, konnten Lüddecke und sein Team in Großserie herstellen. Erste funktionelle Studien starten in Kürze.

Gift männlicher und weiblicher Spinnen unterscheidet sich

In einer weiteren Übersichtsarbeit konnte der Biochemiker in Kooperation mit den Kollegen der Justus-Liebig- Universität Gießen und Forschenden der australischen University of the Sunshine Coast ableiten, dass Spinnengifte sehr dynamisch sind und dass viele Einflüsse ihre Zusammensetzung und Funktionsweise prägen. »Die Dynamik des Spinnengifts wurde bislang völlig unterschätzt. Das biochemische Repertoire wird entscheidend vom Lebensabschnitt, Lebensraum und vor allem vom Geschlecht beeinflusst. Auch der Giftcocktail von Jungtieren und Erwachsenen ist nicht unbedingt identisch. Es ist vielmehr das Zusammenwirken der vielen Bestandteile, das Spinnengift so wirksam macht, als die Wirkung eines einzelnen Toxins. Durch ihre Wechselwirkungen steigern die Komponenten ihre Wirksamkeit«, resümiert der Forscher.

Fakten, Hintergründe, Dossiers

  • Spinnen
  • Spinnengifte
  • Wirkstoffkandidaten
  • Wespenspinne
  • Tiergifte
  • Schädlingsbekämpfung
  • Biomoleküle
  • Peptide
  • Neuropeptide
  • Giftstoffe
  • Therapeutika

Mehr über Fraunhofer IME

  • News

    Qualitätskontrolle von Stammzellen verbessern

    Drei Partner bündeln ihre Kräfte, um die Qualitätskontrolle von Stammzellen weiter zu verbessern: The Scripps Research Institute (TSRI) in Kalifornien, USA, sowie das Zentrum für Integrative Psychiatrie Kiel (ZIP) und das Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie IM ... mehr

    Kraftstoff und Chemikalien aus Stahlwerksabgasen

    Kohlenmonoxidreiche Abgase aus Stahlwerken werden nur zu einem kleinen Teil als Strom oder Wärme zurückgewonnen. Fraunhofer-Forscher haben einen neuen Verwertungsweg für diese stofflich ungenutzte Kohlenstoffquelle aufgetan: Sie konnten im Labormaßstab aus den Abgasen Kraftstoffe und Spezia ... mehr

    Naturkautschuk aus Löwenzahn

    Löwenzahn ist eine robuste Pflanze, aus der sich ein gefragter Rohstoff gewinnen lässt: Kautschuk. Dieser ist für die Produktion von Gummi unerlässlich. Fraunhofer-Forscher nutzen Russischen Löwenzahn, um große Mengen an Naturkautschuk herzustellen. Etwa 40.000 Produkte unseres täglichen L ... mehr

  • q&more Artikel

    Löwenzahn als neue Rohstoffquelle für Naturkautschuk

    Mehr als 12.500 Pflanzen produzieren Latex, einen farblosen bis weißen Milchsaft, der unter anderem Naturkautschuk enthält. mehr

    Animal Venomics

    Über 200.000 Tierarten produzieren Gifte, um sich gegen Feinde zu verteidigen oder ihre Beutetiere zu töten. Bei diesen Giften handelt es sich meist um komplexe Gemische verschiedener Toxine, die im Verlauf der Evolution im Hinblick auf ihre Funktion optimiert wurden. Aus diesem Grund sind ... mehr

  • Autoren

    Dr. Christian Schulze Gronover

    Christian Schulze Gronover, Jahrgang 1975, ist Molekularbiologe und wurde 2004 an der Universität Münster im Fachbereich Biologie zum Doktor der Naturwissenschaften promoviert. Er war während der Promotion unter anderem Gastwissenschaftler am „Scottish Crop Research Institute“ in Dundee, Sc ... mehr

    Prof. Dr. Andreas Vilcinskas

    Andreas Vilcinskas, Jahrgang 1964, studierte Biologie an der TU Kaiserslautern und an der Freien Universität Berlin. Er promovierte 1994 am Institut für Zoologie der FU Berlin und habilitierte sich dort 1998 im Fachgebiet Zoologie. Von 1999 bis 2004 vertrat er als Gastprofessor den Lehrstuh ... mehr

Mehr über Justus-Liebig-Universität Gießen

  • News

    Nur wenige Atome dick: Neue funktionelle Materialien entwickelt

    Sie sind 50.000-mal dünner als ein menschliches Haar und nur wenige Atome dick: Zweidimensionale Materialien sind die dünnsten heute herstellbaren Stoffe. Sie besitzen völlig neue Eigenschaften und gelten als der nächste große Schritt in der modernen Halbleitertechnologie. Künftig könnten s ... mehr

    „Molekularer Schraubstock“ ermöglicht neue chemische Reaktionen

    Externe mechanische Einwirkung kann chemische Reaktionen maßgeblich beeinflussen und sogar neue Transformationen jenseits etablierter Ansätze ermöglichen. Zu den Strategien, Reaktionen so zu steuern, gehören bisher vor allem eindimensionale Polymere, die man mechanischem „Stress“ z. B. durc ... mehr

    Innovative Methode zur umweltfreundlichen Bekämpfung von Getreidepilzen und Schadinsekten

    Pathogene Pilze der Gattung Fusarium sind ursächlich für eine Vielzahl schwerwiegender Pflanzenkrankheiten im Getreideanbau, die zumeist unter dem Begriff „Ährenfusariosen“ zusammengefasst werden und weltweit für immense Ernteverluste und Lebensmittelvergiftungen sorgen. Der Einsatz konvent ... mehr

  • q&more Artikel

    Wie lassen sich unbekannte Wirksubstanzen analysieren?

    Mehr denn je sind Verbraucher über die Qualität und Sicherheit von Lebensmitteln besorgt. So ist beispielsweise bei Pflanzenextrakten, die in Lebensmitteln und Nahrungsergänzungsmitteln verwendet werden, Betrug weit verbreitet. mehr

    Von Insekten lernen

    Was Biodiversität betrifft, gelten Insekten mit über einer Million beschriebener Arten als die erfolgreichste Organismengruppe. Sie haben im Laufe ihrer Evolution ein riesiges Arsenal von Wirkstoffen und Enzymen entwickelt, mit denen sie sich gegen Krankheiten und Feinde verteidigen oder ih ... mehr

    Trendbarometer: mit der Metro zum Flughafen

    Ja, es ist wohl die U-Bahn in der Analytik. Viele Proben werden parallel befördert – ungestylt, auch Rohextrakte in jeglichem Zustand. Der Anschluss an den Flughafen ist gesichert und fliegen können die Moleküle heute in vielfältigster Art und Weise. mehr

  • Autoren

    Prof. Dr. Gertrud Morlock

    Gertrud Morlock, Jahrgang 1966, studierte Ernährungswissenschaften und promovierte in Chemie unter Betreuung von Prof. Dr. Helmut Jork und Prof. Dr. Heinz Engelhardt an der Universität des Saarlandes. Sie arbeitete mehrere Jahre für weltweit führende Industrieunternehmen und kehrte 2004 in ... mehr

    Dr. Rolf-Alexander Düring

    Rolf-Alexander Düring, geb. 1964, studierte Agrarwissenschaften, Fachrichtung Umweltsicherung und Entwicklung ländlicher Räume an den Universitäten in Bonn und Gießen und promovierte 1996 am Institut für Phyto­pathologie und Angewandte Zoologie, Gießen. Nach der Habilitation am Institut für ... mehr

    Dr. Michael Bunge

    Michael Bunge, geb. 1973, studierte Biologie, Fachrichtung Mikro­biologie an der Martin-Luther-Universität Halle und promovierte dort von 1999–2003 am Institut für Mikrobiologie. Nach einem Postdoc-Aufenthalt an der ETH Zürich und Auslandsaufenthalten in Oulu, Finnland, an der Universität I ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: