29.12.2021 - Universität Basel

T-Zellen: Keine Zeit zu sterben

Forscher stossen auf noch unerforschten Signalweg, der T-Zellen lange am Leben erhält

Sie stehen im Kampf gegen Viren, Bakterien und entarteten Zellen an vorderster Front: die T-Zellen unseres Immunsystems. Doch je älter wir werden, desto weniger T-Zellen produziert unser Körper. Wie lange wir gesund bleiben, hängt also auch davon ab, wie lange sie überleben. Forschende der Universität Basel haben nun einen bisher unbekannten Signalweg aufgedeckt, der T-Zellen lange am Leben erhält.

Wie wir Menschen versucht auch jede Zelle unseres Körpers dem Tod möglichst lange zu entkommen. Dies trifft insbesondere auf eine bestimmte Sorte von Immunzellen zu, die T-Lymphozyten oder kurz T-Zellen. Diese Zellen halten Viren, Bakterien, Parasiten aber auch Krebszellen in Schach. Während Säuglinge, Kinder und Jugendliche noch fleissig T-Zellen herstellen, sinkt die Produktion mit zunehmendem Alter stetig. Um auch im hohen Alter noch über ausreichend Abwehrkräfte zu verfügen, sollten die Zellen am besten so lange wie wir selbst leben.

Doch wie es T-Zellen schaffen über einen so langen Zeitraum – beim Menschen bis zu mehrere Jahrzehnte – am Leben zu bleiben, war völlig unklar. Gemeinsam mit Forschenden des Departements Biomedizin und sciCORE der Universität Basel, hat die Forschungsgruppe von Prof. Dr. Jean Pieters am Biozentrum nun einen bislang unentdeckten Signalweg gefunden, der den T-Zellen zu einem langen Leben verhilft. Wie die Forschenden im Fachmagazin «Science Signaling» berichten, verhindert das Protein Coronin-1 über diesen Weg den Zelltod.

Coronin-1 lässt T-Zellen länger leben

Bereits in früheren Arbeiten, wiesen das Team von Pieters und andere Wissenschaftler nach, dass Coronin-1 zwar nicht für die Produktion und das Heranreifen von T-Zellen, aber für ihr Überleben im Körper eine wichtige Rolle spielt. In der aktuellen Studie konnten die Forschenden um Pieters nun zeigen, dass alle bisher bekannten Signalwege, von denen man annahm, dass sie die Lebensspanne der T-Zellen direkt über Coronin-1 steuern, in Wirklichkeit unabhängig von diesem Protein agieren. Und sie haben den bis dato noch unbekannten Signalweg aufgedeckt, über den Coronin-1 dafür sorgt, dass die T-Zellen am Leben bleiben.

Um diesen Signalweg zu finden, entwickelten die Forschenden zunächst eine Methode, mit der sie sehr reine T-Zellen-Populationen gewinnen konnten. Anschliessend analysierten sie die Gesamtheit der RNA-Moleküle sowohl in normalen als auch in Zellen mit Coronin-1-Mangel.

«Wir waren anfangs überrascht, dass die Computer-Auswertung der vielen Gigabytes an Daten keine nennenswerten Unterschiede zwischen diesen beiden Gruppen zu Tage brachte. Just zu diesem Zeitpunkt kam gerade der Covid-19-Lockdown», erzählt Studienleiter Pieters. «Also beschloss ich, die Zeit im Homeoffice zu nutzen, um die vielen Tabellen und Listen mit Genen noch einmal genau zu durchforsten und zu schauen, ob es nicht vielleicht doch eine Verbindung zu anderen Signalwegen gibt, die erklären würden, warum die T-Zellen bei Coronin-1-Mangel verschwinden.»

Forschende stossen auf noch unerforschten Signalweg

Seine Suche ergab tatsächlich einen Treffer: Coronin-1 steuert die Lebensdauer über einen Signalweg, der die Zusammensetzung der Zellmembran überwacht und an dem das Enzym PI3Kdelta beteiligt ist. Mit dem PI3K-Experten Prof. Dr. Matthias Wyman am Departement Biomedizin setzten die Forschenden die einzelnen Teile des Puzzles zusammen. Dabei kristallisierte sich heraus, dass Coronin-1 über PI3Kdelta den Zelltod unterdrückt.

 «Es wird nun spannend, die Ergebnisse weiterzuverfolgen», sagt Pieters. «Wir möchten nicht nur verstehen, welche Rolle die anderen Coronin-Proteine für das Überleben von T-Zellen spielen, sondern auch wie Zellpopulationen, zum Beispiel im Blut zirkulierende T-Zellen, langfristig im Körper zur Verfügung stehen.

Angesichts der Bedeutung von T-Zellen bei so unterschiedlichen Prozessen wie der Abwehr von viralen oder bakteriellen Krankheitserregern, der Entstehung von Krebs und Autoimmunität könnte die Arbeit einen wertvollen Beitrag leisten, um sowohl erwünschte als auch unerwünschte T-Zell-Aktivitäten besser zu kontrollieren.

Fakten, Hintergründe, Dossiers

  • T-Zellen
  • Immunsystem
  • Signalwege

Mehr über Universität Basel

  • News

    Dehnung verändert die elektrischen Eigenschaften von Graphen

    Die elektrischen Eigenschaften von Graphen lassen sich durch eine gleichmässige Dehnung des Materials gezielt verändern, berichten Forschende der Universität Basel. Das ebnet den Weg für die Entwicklung neuartiger elektronischer Bauteile. Graphen besteht aus einer einzigen Schicht von Kohl ... mehr

    Neue Substanzklasse für Redox-Reaktionen

    Ein interdisziplinäres Forscherteam stellt eine neue Klasse chemischer Verbindungen vor, die reversibel oxidiert und reduziert werden kann. Die sogenannten «Pyrazinacene» sind einfache, stabile Verbindungen, die aus einer Reihe stickstoffhaltiger Kohlenstoffringe bestehen. Sie eignen sich f ... mehr

    Die künstliche Zelle auf einem Chip

    Forschende der Universität Basel haben ein exakt kontrollierbares System entwickelt, um biochemische Reaktionskaskaden in Zellen nachzuahmen. Sie nutzen die Mikrofluid-Technik um Mini-Reaktionscontainer aus Polymeren herzustellen, die sie mit den gewünschten Eigenschaften ausstatten. Nützli ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: