24.11.2021 - Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH

Mit künstlicher Intelligenz gegen Bluterkrankungen

Größte öffentliche Datenbank für Knochenmarkzellen erstellt

Wie lassen sich Bluterkrankungen besser diagnostizieren? Dieser Frage geht eine Forschungsgruppe unter der Leitung von Helmholtz Munich nach. Ihr Ziel ist es, die zeitintensive mikroskopische Begutachtung von Knochenmarkzellen durch künstliche Intelligenz (KI) zu erleichtern. Dafür veröffentlichten Forschende die bisher größte, öffentlich zugängliche Datenbank mit mikroskopischen Aufnahmen von Knochenmarkszellen. Diese nutzen sie als Basis für ein KI-Modell mit hohem Potenzial für die Anwendung in der Routinediagnostik.

Um Bluterkrankungen zu diagnostizieren erfolgt in hämatologischen Laboren weltweit tausendfach pro Tag die manuelle Klassifizierung von Knochenmarkszellen, eine seit mehr als 150 Jahren etablierte Methode. Dabei analysiert geschultes Personal gefärbte Präparate von Knochenmarkzellen unter dem Lichtmikroskop. Dies ist ein aufwändiger und zeitintensiver Vorgang – vor allem, wenn man nach seltenen, aber diagnostisch relevanten Zellen sucht. Künstliche Intelligenz könnte zu einem wichtigen Eckpfeiler der Diagnostik werden. Allerdings mangelte es bislang an quantitativ und qualitativ ausreichenden Daten zum Training entsprechender Algorithmen.

Größte öffentliche Datenbank für Knochenmarkzellen

In einer Kooperation von Helmholtz Munich mit dem LMU Klinikum, dem MLL Münchner Leukämie Labor und dem Fraunhofer-Institut für Integrierte Schaltungen IIS in Erlangen erstellte die Forschungsgruppe die bisher größte öffentlich zugängliche Sammlung an mikroskopischen Einzelzellbildern aus Knochenmarkspräparaten. Die Datenbank besteht aus mehr als 170.000 Einzelzellbildern von über 900 Patienten mit verschiedenen Bluterkrankungen.

Datenbank als Basis für künstliche Intelligenz

„Auf Basis dieser Datenbank haben wir ein neuronales Netz entwickelt, das vorherige KI-Algorithmen zur Zellklassifikation an Genauigkeit, aber auch an Verallgemeinerbarkeit übertrifft“, sagt Christian Matek, Erstautor der neuen Studie. Bei dem neuronalen Netz handelt sich um ein Konzept aus dem Bereich des tiefen maschinellen Lernens, das speziell für das Verarbeiten von Bildern geeignet ist. „Die Analyse von Knochenmarkszellen ist bisher noch nicht mit modernen neuronalen Netzen bearbeitet worden“, führt Christian Matek aus, „was auch daran liegt, dass hochqualitative, öffentliche Datensätze bislang nicht verfügbar waren.“

Die Forschenden planen, die Knochenmarkszelldatenbank weiter auszubauen, um ein breiteres Spektrum an Befunden erfassen und das Modell prospektiv validieren zu können. „Die Datenbank und das Modell sind für Forschung und Lehre frei verfügbar – für die Schulung von Fachpersonal oder als Referenz für weitere KI-basierte Ansätze, beispielsweise zur Blutkrebsdiagnostik“, bekräftigt Studienleiter Carsten Marr.

Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH

News weiterempfehlen PDF Ansicht / Drucken News zur Merkliste

Teilen bei

Fakten, Hintergründe, Dossiers

  • künstliche Intelligenz
  • Bluterkrankungen
  • Knochenmark

Mehr über Helmholtz Zentrum München

  • News

    Künstliche Intelligenz hilft bei der Erkennung einzelner kranker Zellen

    Forscher haben einen neuen Algorithmus für die klinische Anwendung entwickelt. Er basiert auf künstlicher Intelligenz und vergleicht die Zellen kranker Personen mit einem Referenzatlas gesunder Zellen. In der Praxis können Ärzte damit kranke Zellen genau identifizieren. Dies ist ein großer ... mehr

    Bauchspeicheldrüsen-Organoide auf neu entwickelter Chip-Plattform

    Eine neue Organoid-on-Chip-Plattform ahmt die wichtigsten Merkmale der Entwicklung der menschlichen Bauchspeicheldrüse robust nach. Dies ist ein Meilenstein auf dem Weg, Bauchspeicheldrüsenkrebs künftig in einem frühen Stadium diagnostizieren zu können. Die Studie wurde von einem interdiszi ... mehr

    Wie Zellen um ihre Existenz streiten

    Der Wettstreit zwischen Zellen ist eine wichtige Qualitätskontrolle. Er stellt sicher, dass nur gesunde Zellen für die Entwicklung eines Organismus zum Einsatz kommen. Forschenden ist nun gelungen, besser zu verstehen, wie die Zellen miteinander konkurrieren und welche Faktoren darüber ents ... mehr

  • q&more Artikel

    Mit Deep Learning Blutkrankheiten besser verstehen

    Seit Langem nutzen Ärzte zur Diagnose von Erkrankungen des blutbildenden Systems das Lichtmikroskop. Die Auswertungen einzelner Blutzellen erfolgen hierbei zum großen Teil manuell. Jetzt erhalten sie digitale Unterstützung durch künstliche Intelligenz. mehr

    Herausforderung

    In nahezu allen Bereichen der Umwelt­analytik, aber auch in der Produktqualitätskontrolle, Life-Sciences, biomedizinischen oder pharmazeutischen Forschung hat sich in der Vergangenheit die Zahl der Analysen ständig erhöht. Analytische Untersuchungen dienen dem Schutz der Gesundheit von Mens ... mehr

  • Autoren

    Dr. Carsten Marr

    Carsten Marr, Jahrgang 1977, studierte Allgemeine Physik an der Technischen Universität München. Seine Diplomarbeit verfasste er am Max-Planck-Institut für Quantenoptik, Garching und forschte 2003 in der Quantum Information and Quantum Optics Theory Group am Imperial College, London. Im Jah ... mehr

    Dr. Christian Matek

    Christian Matek, Jahrgang 1986, studierte in München Physik und Medizin. Im Jahr 2014 promovierte er an der University of Oxford,Großbritannien, in theoretischer Physik. Seit 2017 liegt sein Forschungsschwerpunkt im Bereich der Künstlichen Intelligenz und des Maschinellen Lernens in der bil ... mehr

    Prof. Dr. Bernhard Michalke

    Bernhard Michalke ist Leiter der Forschungsgruppe „Element- und Elementspeziesanalytik“ und der „Zentralen Anorganischen Analytik“ am Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt. Prof. Michalke studierte Biologie an der Technischen Universität München u ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: