09.11.2021 - Friedrich-Alexander-Universität Erlangen-Nürnberg

Wie Zellen aktive Gene korrekt auswählen

Bildung von Transkriptionsfabriken ähnelt der Kondensation von Flüssigkeiten

Zellen müssen präzise kontrollieren, welche der vielen im Erbgut enthaltenen Gene sie nutzen. Dies geschieht in sogenannten Transkriptionsfabriken, molekularen Ansammlungen im Zellkern. Forschende am Karlsruher Institut für Technologie (KIT), an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) und am Max-Planck-Zentrum für Physik und Medizin (MPZPM) haben nun festgestellt, dass die Bildung der Transkriptionsfabriken der Kondensation von Flüssigkeiten ähnelt. Ihre Erkenntnisse können künftig zum Verständnis von Krankheitsursachen beitragen sowie die Entwicklung DNA-basierter Datenspeicher voranbringen. Die Wissenschaftlerinnen und Wissenschaftler berichten in Molecular Systems Biology.

Das Erbgut des Menschen enthält mehr als 20.000 verschiedene Gene. Allerdings greift jede Zelle nur auf einen Bruchteil der in diesem Genom gespeicherten Informationen zurück. Zellen müssen also genau kontrollieren, welche Gene sie nutzen – sonst kann es beispielsweise zur Entstehung von Krebs oder auch zu Störungen im embryonalen Wachstum kommen. Eine zentrale Rolle bei der Auswahl der aktiven Gene kommt sogenannten Transkriptionsfabriken zu. „Bei diesen Fabriken handelt es sich um molekulare Ansammlungen im Zellkern, welche die korrekte Auswahl der aktiven Gene und das Auslesen ihrer Sequenz an einem zentralen Ort vereinen“, erklärt Lennart Hilbert, Juniorprofessor für Systembiologie/Bioinformatik am Zoologischen Institut (ZOO) und Arbeitsgruppenleiter am Institut für Biologische und Chemische Systeme – Biologische Informationsprozessierung (IBCS-BIP) des KIT.

In wenigen Sekunden aufgebaut und gestartet

Wie Transkriptionsfabriken innerhalb von wenigen Sekunden aufgebaut und gezielt in Betrieb genommen werden, beschäftigt Zell- und Molekularbiologinnen und -biologen seit Jahrzehnten. Ergebnisse der vergangenen Jahre deuten auf die Relevanz von Vorgängen hin, die zuvor nur von industriellen und technischen Polymer- und Flüssigmaterialien bekannt waren. Aktuell untersucht die Forschung besonders die Phasentrennung als einen zentralen Mechanismus. Im Alltag zeigt sich die Phasentrennung beispielsweise bei der Trennung von Öl und Wasser. Bisher war jedoch nicht geklärt, wie genau die Phasentrennung zum Aufbau von Transkriptionsfabriken in lebenden Zellen beiträgt.

Forschende am Institut für Biologische und Chemische Systeme (IBCS), am Zoologischen Institut (ZOO), am Institut für Angewandte Physik (APH) und am Institut für Nanotechnologie (INT) des KIT haben zusammen mit Wissenschaftlern an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), am Max-Planck-Zentrum für Physik und Medizin (MPZPM) in Erlangen und an der University of Illinois at Urbana-Champaign/USA nun neue Erkenntnisse zur Bildung von Transkriptionsfabriken gewonnen: Sie geschieht ähnlich wie die Kondensation von Flüssigkeiten. Dies zeigen die Wissenschaftlerinnen und Wissenschaftler in einer Publikation in der Zeitschrift Molecular Systems Biology. Ko-Erstautoren sind Agnieszka Pancholi am IBCS-BIP und am ZOO des KIT sowie Tim Klingberg an der FAU und am MPZPM.

Modernste Lichtmikroskopie mit Computersimulationen kombiniert

In ihrer Publikation zeigen die Forschenden, dass die Kondensation bei der Bildung von Transkriptionsfabriken dem Beschlagen einer Brille oder einer Fensterscheibe ähnelt: Flüssigkeit schlägt sich nur in Anwesenheit einer empfänglichen Oberfläche nieder, dann allerdings sehr schnell. In der lebenden Zelle dienen speziell markierte Bereiche des Genoms als Kondensationsoberfläche. Die mit Flüssigkeit umhüllten Bereiche erlauben dann das Anhaften relevanter Gensequenzen sowie zusätzlicher Moleküle, welche die anhaftenden Gene schließlich aktivieren. Diese Erkenntnisse wurden im Rahmen einer interdisziplinären Zusammenarbeit erreicht. So beobachteten die Forschenden Zebrafischembryonen mit modernsten Lichtmikroskopen, die am Lehrstuhl von Professor Gerd Ulrich Nienhaus am APH entwickelt wurden. Diese Beobachtungen wurden verbunden mit Computersimulationen am Lehrstuhl für Mathematik in den Lebenswissenschaften an der FAU und am MPZPM, den Professor Vasily Zaburdaev leitet. Die Kombination von Beobachtungen und Simulationen macht den Kondensationsvorgang nachvollziehbar und erklärt, wie lebende Zellen schnell und zuverlässig Transkriptionsfabriken aufbauen können.

Das neue Verständnis kondensierter Flüssigkeiten in lebenden Zellen hat in den vergangenen Jahren grundsätzlich neue Ansätze zur Therapie von Krebs und Erkrankungen des Nervensystems geliefert. Diese Ansätze werden bereits von erst kürzlich gegründeten Unternehmen verfolgt, um neue Medikamente zu entwickeln. Andere Forschungsarbeiten befassen sich mit dem Einsatz von DNA-Sequenzen als digitale Datenspeicher. Die prinzipielle Machbarkeit DNA-basierter Datenspeicher wurde inzwischen von mehreren Arbeitsgruppen demonstriert. Informationen zuverlässig in solchen DNA-Speichermedien zu speichern und auszulesen, stellt jedoch noch eine Herausforderung dar. „Unsere Arbeit zeigt, wie die biologische Zelle solche Vorgänge schnell und gleichzeitig zuverlässig organisiert. Die von uns erstellten Computersimulationen und Funktionskonzepte lassen sich direkt auf künstliche DNA-Systeme übertragen und können deren Design unterstützen“, sagt Lennart Hilbert.

Fakten, Hintergründe, Dossiers

  • Zellen
  • Transkription
  • Gene

Mehr über Friedrich-Alexander-Universität Erlangen-Nürnberg

  • News

    Nano-Rost: Smartes Additiv zur Temperaturüberwachung

    Die richtige Temperatur ist entscheidend – ob bei technischen Prozessen, für die Qualität von Lebensmitteln und Medikamenten oder für die Lebenszeit von Elektronikbauteilen und Batterien. Hierzu erfassen Temperaturindikatoren (un)erwünschte Temperaturerhöhungen, die später ausgelesen werden ... mehr

    Was haben Kaffee, Rotwein und Tinte gemein?

    Wer schon mal eine Tasse Kaffee umgestoßen hat weiß, dass Kaffee in einem außergewöhnlichen Muster trocknet: Der Fleck ist in der Mitte heller, wird nach außen hin aber von einem dunkleren Rand umschlossen – einem sogenannten Kaffeering. Ein Forschungsteam um Prof. Dr. Nicolas Vogel, der an ... mehr

    Per Kapsel durch die Blutbahn

    Bakterien im Darm verpacken verschiedenste ihrer Biomoleküle in kleine Kapseln. Diese werden vom Blutkreislauf in verschiedene Organe des Körpers transportiert und sogar von Nervenzellen des Gehirns aufgenommen und verarbeitet. Dies hat jetzt erstmals ein Team von Forscherinnen und Forscher ... mehr

  • q&more Artikel

    Aromastoffübergang in Muttermilch

    „Der Mensch ist, was er isst.“ Das Zitat des deutschen Philosophen Ludwig Feuerbach (1804–1872) lässt sich auch auf die Ernährung unseres Nachwuchses übertragen: Die Ernährungsgewohnheiten der Mutter spiegeln sich im Aromaprofil der Muttermilch wieder [1, 2] und können dadurch ... mehr

    Bunte Fehlgerüche in Künstlerfarben

    Farben auf Acrylbasis gehören zu den am häufigsten verwendeten Farben. Obwohl die Farben auf Wasserbasis hergestellt werden können und dabei geringe Anteile an flüchtigen Substanzen in der Produktion zum Einsatz kommen, weisen Acrylfarben dennoch häufig einen starken Eigengeruch auf. Bislan ... mehr

    Modellierte Medikamente

    Computergestütztes Medikamentendesign (CADD) ist nichts Neues. Das Journal of ­Computer-Aided Molecular Design (Springer) wurde 1987 gegründet, als die 500 weltweit schnellsten Computer langsamer als ein heutiges Smartphone waren. Damit ist dieses Feld ein Vierteljahrhundert alt. mehr

  • Autoren

    Dr. Helene M. Loos

    Helene Loos studierte Lebensmitteltechnologie an der Universität Hohenheim und promovierte 2015 im Fach Lebensmittelchemie an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU). Während ihrer Promotion untersuchte sie bei Prof. Dr. Andrea Büttner und Dr. Benoist Schaal am Fraunhofe ... mehr

    Diana Owsienko

    Diana Owsienko, Jahrgang 1994, studierte von 2013 bis 2017 Lebensmittelchemie an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) und absolvierte von 2017 bis 2018 ihre wissenschaftliche Abschlussarbeit am Fraunhofer-Institut für Verfahrenstechnik und Verpackung (IVV) in Freising ... mehr

    Nadine I. Goldenstein

    Nadine Goldenstein studierte Meeresumweltwissenschaften an der Universität Bremen. Im Anschluss arbeitete sie als Wissenschaftlerin im Bereich der organischen Biogeochemie am MARUM, Bremen, wo sie sich intensiv mit der Erforschung mikrobieller Stoffwechselprozesse, mit Fokus auf den globale ... mehr

Mehr über KIT

  • News

    Von der WG ins Mikroben-Eigenheim

    Mikroorganismen sind die ältesten, häufigsten und diversesten Lebensformen der Erde und bieten ein enormes Potenzial für biotechnologische Anwendungen. Bis heute konnte jedoch nur ein Bruchteil davon isoliert und kultiviert werden. Das vom Bundesforschungsministerium mit 1,5 Millionen Euro ... mehr

    Simultankonzept beschleunigt Elektrodenherstellung

    Ein innovatives Konzept für die simultane Beschichtung und Trocknung zweilagiger Elektroden haben Forscher am Karlsruher Institut für Technologie (KIT) entwickelt und erfolgreich angewendet. Dadurch gelingt es, Trocknungszeiten auf unter 20 Sekunden zu verkürzen, was gegenüber dem derzeitig ... mehr

    Automatisierte chemische Synthese - Zuverlässige Herstellung und zügiger Erkenntnisgewinn

    Eine der modernsten Infrastrukturen zur automatischen Prozessführung in der Chemie baut das Karlsruher Institut für Technologie (KIT) gemeinsam mit der BASF SE auf: Die Anlage wird zunächst neue Substanzen parallelisiert für Anwendungen in Bereichen von Biologie bis Materialwissenschaften h ... mehr

  • q&more Artikel

    Analytische Quantifizierung von Gluten in Lebensmitteln

    Der Gesetzgebung zufolge dürfen Lebensmittel, die mit einem Glutenfrei-Symbol versehen sind, nicht mehr als 20 mg Gluten pro Kilogramm enthalten, was für Zöliakie-Betroffene aus gesundheitlichen Gründen lebenswichtig ist. mehr

    Bewertung der Lungentoxizität von Luftschadstoffen

    Die aktuellen Diskussionen zu Fahrverboten in europäischen Städten zeigen einerseits den hohen Stellenwert, den die Bevölkerung der Luftqualität zumisst, und andererseits den Mangel an Methoden, die von Luftschadstoffen ausgehende Beeinträchtigung der menschlichen Gesundheit direkt zu bewerten. mehr

    Biochemie in der Mikrowelle

    Die Entwicklung neuer Pharmazeutika beruht auf dem zunehmenden Verständnis intrazellulärer Vorgänge. Insbesondere durch die Erforschung von Ligand-Rezeptor-Wechselwirkungen können Wirkstoffe ­besser angepasst werden. Um Medikamente an ihren Wirkungsort ­zu bringen, werden sog. „Carrier“-Mol ... mehr

  • Autoren

    Prof. Dr. Katharina Scherf

    Katharina Scherf, Jahrgang 1985, studierte Lebensmittelchemie an der Technischen Universität München (TUM). Ihre Promotion und Habilitation erwarb sie ebenfalls an der TUM und war als leitende Wissenschaftlerin am Leibniz-Institut für Lebensmittel-Systembiologie an der TUM tätig. 2019 wurde ... mehr

    Majlinda Xhaferaj

    Majlinda Xhaferaj, Jahrgang 1992, schloss ihr Lebensmittelchemiestudium im Jahr 2018 am Karlsruher Institut für Technologie (KIT) ab. Seit 2019 ist sie Doktorandin in der Abteilung für Bioaktive und Funktionelle Lebensmittelinhaltsstoffe mit dem Schwerpunkt der Glutenanalytik zur Verbesseru ... mehr

    Dipl. Ing. Sonja Mülhopt

    Sonja Mülhopt erwarb 2000 ihr Diplom für Maschinenbau an der Berufsakademie (heute DHBW) Mannheim. Die begleitende Ausbildung durchlief sie am Forschungszentrum Karlsruhe, dem heutigen Karlsruher Institut für Technologie (KIT). 2014 erhielt sie den Master of Science für Chemieingenieurwesen ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: