19.10.2021 - Max-Planck-Institut für Polymerforschung

Moleküle im Eierkarton

Wie Wasseroberflächen zur Herstellung funktionaler Materialien genutzt werden können

Die Herstellung hochwertiger Monolagen - d. h. nur ein Molekül hoch - ist für optoelektronische Bauteile wie organische Leuchtdioden, die heute in modernen Handys verwendet werden, von großer Bedeutung: Sowohl die Lebensdauer als auch die Energieeffizienz können hierdurch erhöht werden. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung haben nun in Zusammenarbeit mit der TU Dresden mit Hilfe von Lasern untersucht, wie Wasseroberflächen als eine Schablone für die regelmäßige Anordnung von Molekülen genutzt werden können und welche physikalisch-chemischen Mechanismen dahinter stecken.

Organische Leuchtdioden bestehen aus vielen dünnen Schichten, von denen einige nur ein Molekül dick sind. Die bereits in den 1980er Jahren entdeckte "On-Water-Chemie" - die Nutzung von Wasseroberflächen zur Beeinflussung chemischer Reaktionen - ist ein vielversprechender Ansatz zur Herstellung solcher Schichten. Wie ein Eierkarton bietet diese Art der Chemie die Möglichkeit, Moleküle selektiv in eine kristalline, d. h. regelmäßig angeordnete Struktur zu zwingen: Sie können nur dort sitzen, wo die Tenside auf der Wasseroberfläche es ihnen erlauben.

Bislang war unklar, welche physikalischen und chemischen Prozesse für diese Anordnung notwendig sind. Welche Rolle spielt zum Beispiel die Ladung des Tensids? Inwieweit müssen die Bindungsabstände auf der Wasseroberfläche mit denen des aufgebrachten Moleküls übereinstimmen?

Yuki Nagata, Gruppenleiter im Arbeitskreis von Mischa Bonn am MPI für Polymerforschung, und sein Team sind diesen Fragen nachgegangen. Dazu nutzten sie das Molekül "Polyanilin" als Versuchsobjekt und untersuchten den Prozess der Anordnung auf der Wasseroberfläche mit Hilfe der Laserspektroskopie genauer.

Die Summenfrequenzspektroskopie (SFG) ist dafür ideal geeignet, da sie nur Signale von der Grenzfläche und nicht vom darunter liegenden Wasser liefert. Mit ihrer Hilfe konnte das Team den Polymerisationsprozess über einen Zeitraum von mehreren Stunden abbilden und auch entstehende Zwischenstufen nachweisen.

"Wir konnten zeigen, dass die Ladung an der Oberfläche für die Qualität der synthetisierten Proben von Bedeutung ist", so Nagata. "Wir hoffen, dass unsere Forschung die Möglichkeit bietet, maßgeschneiderte Polymerbeschichtungen herzustellen, indem die Wasseroberflächen entsprechend angepasst werden."

Die Ergebnisse des Teams wurden jetzt in der Oktoberausgabe der Zeitschrift Chem veröffentlicht.

Fakten, Hintergründe, Dossiers

  • Polymerbeschichtungen

Mehr über MPI für Polymerforschung

  • News

    Kombinatorische Krebstherapie

    Auf der Suche nach Wirkstoffen gegen Krebs stehen immer häufiger Kombinationstherapien im Mittelpunkt. Wissenschaftler aus Deutschland und China haben jetzt Chemotherapie mit photodynamischer Therapie kombiniert. Alle Wirkstoffe werden in einer Nanokapsel mit Proteinhülle verkapselt und gem ... mehr

    Wenn Ionen an ihrem Käfig rütteln

    In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jed ... mehr

    Aus eins mach zwei – Teilung künstlicher Zellen

    Die Erfolgsgeschichte des Lebens auf der Erde beruht auf der erstaunlichen Fähigkeit von lebenden Zellen, sich in zwei Tochterzellen zu teilen. Während eines solchen Teilungsprozesses muss die äußere Zellmembran eine Reihe von Formänderungen durchlaufen, die schließlich zur Membranteilung f ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: