18.10.2021 - Friedrich-Schiller-Universität Jena

Mit künstlicher Intelligenz zu neuen Naturstoffen

Neues Verfahren kann bislang unbekannte kleine Moleküle schnell und sicher identifizieren

Sie sind entzündungshemmend, können Krankheitskeime abwehren oder unterbinden sogar das Wachstum von Krebszellen – Wirkstoffe aus der Natur. Mehr als ein Drittel aller heute verfügbaren Medikamente basieren auf solchen sekundären Naturstoffen, wie sie in zahlreichen Pflanzen, Bakterien und Pilzen vorkommen. Den reichhaltigen Medizinschrank der Natur nutzbar zu machen und neue Naturstoffe zu identifizieren, ist jedoch zeit-, kosten- und arbeitsintensiv. Ein Team der Bioinformatik an der Friedrich-Schiller-Universität Jena hat jetzt ein Verfahren entwickelt, mit dem sich kleine Wirkstoff-Moleküle sehr viel schneller und einfacher identifizieren lassen als bisher. Ihr Verfahren COSMIC (Confidence Of Small Molecule IdentifiCations) stellen die Forschenden in der aktuellen Ausgabe der Fachzeitschrift Nature Biotechnology vor.

Millionen von Strukturdaten bisher nicht entschlüsselt

Will man wissen, welche Substanzen eine biologische Probe wie etwa ein Pflanzenextrakt enthält, wird diese mittels Massenspektrometrie analysiert. Dabei werden die Moleküle in Fragmente zerlegt und deren Masse bestimmt. „Die von uns entwickelte Molekülsuchmaschine CSI:FingerID erlaubt es gezielt nach Molekülstrukturen zu suchen, die zu diesen Fragmenten passen“, beschreibt Prof. Dr. Sebastian Böcker von der Universität Jena das Vorgehen. „Ob diese Suche erfolgreich ist – das Suchergebnis also die korrekte Struktur wiedergibt – können wir so nicht entscheiden“.

Mittlerweile liegen riesige Datensammlungen mit Milliarden von Massenspektrometriedaten aus Millionen von Analysen biologischer Proben vor, wovon der weitaus größte Teil in ihrer Struktur nicht identifiziert sind. Genau hier kommt nun COSMIC zum Einsatz und ermöglicht es, für einen großen Teil dieser bisher unidentifizierten Moleküle automatisch Strukturen zu entschlüsseln. „Dabei nutzen wir Verfahren des maschinellen Lernens“, erläutert Martin Hoffmann, der Erstautor der vorgelegten Publikation. „Zunächst wird das Massenspektrum der untersuchten Probe mit den verfügbaren Strukturdaten abgeglichen.“ Als Ergebnis erhält man – wie in einer Google-Suche – eine mehr oder weniger umfangreiche Liste möglicher Treffer. „Unsere Methode gibt nun an, wie sicher es ist, dass der gefundene Treffer an erster Stelle tatsächlich die Struktur ist, nach der wir suchen“, veranschaulicht Hoffmann. Dafür ermittelt COSMIC einen Score, der die Qualität des vorgeschlagenen Treffers bewertet und daraus ableitet, ob er richtig oder falsch ist.

Neue Gallensäuren entdeckt

Wie gut ihre Methode tatsächlich funktioniert, konnten Böcker und sein Team in Kooperation mit Kolleginnen und Kollegen der University of California in San Diego demonstrieren. Sie haben dafür Massenspektrometriedaten des Verdauungssystems von Mäusen untersucht und darin nach bislang unbekannten Gallensäuren gesucht. Dafür wurden über 28.000 theoretisch mögliche Gallensäurestrukturen konstruiert und diese mit den Messdaten aus dem Mikrobiom der Mäuse abgeglichen. Die anschließende Analyse mit COSMIC lieferte insgesamt elf neue, bislang völlig unbekannte Gallensäurestrukturen. Zwei davon konnten inzwischen anhand gezielt synthetisierter Referenzproben bestätigt werden.

„Das zeigt zum einen, dass unsere Methode zuverlässig funktioniert“, unterstreicht Sebastian Böcker. Zum anderen biete COSMIC die Chance, die Suche nach neuen interessanten Substanzen erheblich zu beschleunigen, da sich das Screening vollautomatisch, ohne personellen Aufwand und in kurzer Zeit durchführen lasse. Er erwartet, dass in den kommenden Jahren auf diese Weise Tausende neuer Molekülstrukturen aufgeklärt werden können.

Fakten, Hintergründe, Dossiers

  • Naturstoffe
  • Bioinformatik
  • maschinelles Lernen

Mehr über Uni Jena

  • News

    Von Sonnenlicht zu Wasserstoff

    Die Gewinnung von molekularem Wasserstoff als alternativer, erneuerbarer und sauberer Energieträger ausgehend von Wasser und Licht ist ein zentrales Element der solaren Energieumwandlung und -speicherung. Ein Team des Sonderforschungsbereichs „CataLight“ der Universitäten Jena und Ulm hat n ... mehr

    Neuartiger Ansatz 
zur Speicherung von Sonnenenergie

    Die Energie aus der Sonne so effizient zu nutzen und in chemische Energie umzuwandeln wie es die Natur macht, könnte den weltweiten CO2-Ausstoß drastisch verringern. Ein Forschungsteam des Leibniz-Instituts für Photonische Technologien und der Universität Jena ist dieser Vision nun einen Sc ... mehr

    Wasserbakterien haben einen grünen Daumen

    Die schier endlosen Weiten der Ozeane sind lebensfeindliche Wüsten — jedenfalls aus der Perspektive eines im Wasser lebenden Bakteriums. Winzig klein wie es ist, wären seine Chancen äußert gering, in den Wassermassen ausreichend Nahrung zu finden. Doch wie in anderen Wüsten auch, gibt es au ... mehr

  • q&more Artikel

    Gene auf Zucker

    Der gezielte Transport von DNA und RNA mit Vektoren, meist aus synthetischen Polymeren, in Zellkulturen gehört mittlerweile zum festen Repertoire der biologischen Forschung und Entwicklung, was die Vielzahl an kommerziellen Kits zeigt. Allerdings gestalten sich bisher nicht nur viele Laborv ... mehr

    Sex oder Tod

    Diatomeen sind einzellige Mikroalgen, die aufgrund ihrer filigranen und reich verzierten mineralisierten Zellwand auch als Kieselalgen bezeichnet werden. Trotz ihrer mikroskopisch kleinen Zellen spielen ­diese Algen eine fundamentale ­Rolle für marine Ökosysteme und sind sogar zentrale Akte ... mehr

    Wertgebende Komponenten

    Die Isolierung bioaktiver Pflanzeninhaltsstoffe, ätherischer Öle bzw. pflanzlicher Farb- und Aromastoffe erfordert aufwändige und kostenintensive Verfahren. Oft ist jedoch für verschiedene Anwendungen eine Isolierung der Einzelkomponenten nicht erforderlich, es genügt deren Konzentrierung. ... mehr

  • Autoren

    Prof. Dr. Thomas Heinze

    Thomas Heinze, Jahrgang 1958, studierte Chemie an der FSU Jena, wo er 1985 promovierte und nach dem Postdoc an der Katholischen Universität Leuven (Belgien) 1997 habilitierte. 2001 folgte er dem Ruf auf eine Professur für Makromolekulare Chemie an die Bergische Universität Wuppertal. Seit 2 ... mehr

    Prof. Dr. Dagmar Fischer

    Dagmar Fischer ist approbierte Apothekerin und promovierte 1997 im Fach Pharmazeutische Technologie und Biopharmazie an der Philipps-Universität Marburg. Nach einem Aufenthalt am Texas Tech University Health Sciences Center, USA, sammelte sie mehrere Jahre Erfahrung als Leiterin der Präklin ... mehr

    Prof. Dr. Stefan H. Heinemann

    Stefan H. Heinemann, geb. 1960, studierte Physik an der Universität Göttingen. Nach zweijähriger Forschungszeit an der Yale University, New Haven, USA, promovierte er 1990 am Max-Planck-Institut für biophysikalische Chemie in Göttingen. Nach einem Forschungsaufenthalt an der Standford Unive ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: